
DOCUMENT RESUME

ED 055 457 EM 009 308

AUTHOR Goldberg, Adele
TITLE A Generalized Instructional System for Elementary

Mathematical Logic.
INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO TR-179
PuB DATE 11 Oct 71
NOTE 96p.; Psychology and Education Series

EDRS PR/CE
DESCRIPTORS

MF-$0.65 HC-$3.29
Calculus; *Computer Assisted Instruction; *Computer
Programs; *Mathematical Logic; *Mathematics
Instruction

ABSTRACT
A computer-based instructional system for teaching

the notion of mathematical proof is described. The system is capable
of handling formalizations of the full predicate calculus with
identity and, with minor work, definite description. Designed as an
instructional device, the program is also the basis for a number of
research projects involving the use of mechanical theorem-provers for
teaching theorem-proving. The entire system is presented here in
detail: the program as written in the LISP programing language for a
PDP-10 computer. Instructions on how to use the system for research
and teaching, block diagrams of key program routines, and example
curriculums are included. Enough detail is provided so that versions
in other languages for other computer systems may be programed from
the information presented here. (Author/JY)

A GENERALIZED INSTRUCT I ONAL SYSTEM FOR

ELEMENTARY MATHEMAT I CAL LOG I C

BY

ADELE GOLDBERG

TECHNICAL REPORT NO. 179

OCTOBER 11, 1971

PSYCHOLOGY & EDUCATION SERIES

SCOPE OF INTEREST NOTICE
The ERIC Facility has assigned
this document for.gocessing
to:

In our judgement, this document
is alsc of interest to the clearing-
houses noted to the right. Index-
ing should reflect their special
points of view.

INSTITUTE FOR MATHEMATICAL STUDIES, IN THE .SqC,tAL SC IENCES

STANFORD UN IVER'S I Tlr

cri STANFORD, CALIFORN
IC)

v..11

TECHNICAL REPORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown in parenthes.s i published title is different from title of Technical Report,
this Is also shown in parentheses.)

(For reports no. 1.- 44, see Technical Report' no. 125.)

50 R. C. Atkinson and R. C. Geffee. Mathematical learning theory. January 2,1963. Or. B. B. Wo !man (Ed.), Scientific Psycho !eel,. New York:
Basic Books, Inc., 1965. Pp. 254-275).

51 P. Suppe3, E. Crothers, and-R. Weir. Application of mathematical learning theory and linguistic analysis to vowel phoneme matching In

Russian words. December 28,1962.
52 R. C. Atkinson, R. Ca Hee, G. Sommer, W. Jeffrey and R. Shoemaker. A test of three models for stimulus compounding with children.

January 29,4963. U. tate. Psychol., 1964, 67, 52-58)
53 E. Crothers. General Markov modals for learning with Inter-trial forgeUing. April 8,19113.
54 J. L. Myers and R. C. Atkinson. Choice behavior and reward structure. May 24,1963. (Journal math. Psychol., 1964,1,170-203)
55 R. E. Robinson'. A setrtheoretical approach to empirical Meaningfulness of measurement statements. JUneI0, 1963.

56 E. Crothers, R. Weir and P. Palmer. The role of transcription in the learning of the orthowaphic representations of Russian sounds. June17,. 1963.

57 P. Suppes. Fsoblems of optimization in learning a list of simple items. July 22,1963. (In Maynard W. Shelly; 11 and Glenn L. Bryan (Ed.),
Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-126)

58 R. C. Atkinson and E. J. Crothers. Theoretiwi note: all-or-none learning and intertrial forgetting. July 24, 1963.
59 R. C. °Wee. Long-term behavior of rats under probabilistic reinfertement schedulei. October 1, 1963.
60 R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms for paired-assoclate learning. October 25,1963. (A comparison

of paired-associate learning models having different acquisition and retention axioms, J. meth. Psychot., 1964,1, 285-315)

61 W. J. McGill and J. Gibbon.. The.generalmiamma distribution and reaction time's: November 20,1963. W. math. Psychol., 1965, 11-18)
62 M. F. Norman. Incremental learning on random trials. December 9,1963. U. math. Psychol., 1964., f2336-351)
63 P. Suppes. The development Of mathematical concepts in children. February-25,1964. (On the behavioral foundations of mathematical cOncepto

Moemphs of the Society far Research in Child Development, 1965, 30,. 60-96)
64 P. Suppes. MaThematical concept formation in children. April 10,1964. (Arer. Etset2.9,1ist 1966, 21,139-150)
65 R. C. Calf**, R. C. Atkinson, and T. Shelton, Jr. MathemitiCal models for verbal !earning. August 21,T964. (In N. Wiener and J.-P. Schad::

(Eds.); Cybernetics of tne Nervous Systenn Prowess In Brain Research. Anesten'.....m, The Netherlands: Elsevier Publishing Co.;1965.
Pp. 333-349)

66 L. Keller, 11.. Cole, C. J. Bake, and W. K. Estes. Paired associate learning with differential rewards. August 20,1964. (Reward and
information values of trial mitcomes in piked associate learning. (PsychOl. Monogr., 1965, 79,1-21)

67 Id..F. Norman. A probabilistic model for free-responding. Decomber 14, 1964.
68 W. K. Estes and H. A. Taylor. Visual detection In relatinc to display size and redundancy of critical elements. January 25,1965, Revlsed

7-1-65. (Percecon and Psychophysics, 1966, L, 9-16) ..-

69 P. Suppes and J. Donio. Foundatione of stimulus-sampii,ig.therry For oontinueus-time processes. Februarr 9,1965. U. r.th. Psyche.. 1967,

4,'202-225)
70 R.I. Atkinsen and R. A. Kinchla. A learning model for forced-choice.detection experiments. February 10;1965. (Br. J. math stet. Psychol ,

1965,18,184-206)
-

71 E. J. Crothers. Preseniation orders for items from different categories. March 10,1965.
72 P. Suppes, G. Groan, and Id. Schlag-Rey. Some models for response latency In paired-associates learning. May 5,1965.

1966, 3, 99-128).
73 11. V. 6'avine. The -generalization fenction In the proballIty leaning experiment. June3;,1965.-.
74 D. 'Hansen and T. S. Rodgers. An exploration of psycholIngtristic.unita In-Initial reading.. July 6,1965.
75 B. C. Arnold. A correlated urn-scheme for A Oontinuum ofresponeas.. July 20,1965.
76 C. Iowa and W. K. Estes. Reinforce:none-test sequences In paired-asanciatelearning.' August 1,1965. (Psythol... lisarte,1966, 18, 879-919)
.77 S. L.. Blehert. Pattern dIserheination learninfwIth 2hiMus monkeys-. September 1,1965. (Psichol. tem,.1966;.19,' 311-324)

78 J. L. Phillips and R. C. Atkinson. The effeats of dielday size On ehort-term memory.. August31 1965 ..

79 R. C. Atkinson. and.R. 141.- Shiffrin. Miihematical modele for memory and. learning; September 20 ;1965.:

80 P. Suppei. The psychologleal foundations .or Mathematles.-. Octets:v.25,1965. '(Colingeee hitonnitionaux du-Centre National de Ia Recherche

SclentifIgue. Editions *du donee National de la Recherche ScientifIget..Faris:196?... Pp. 213,242).
81 P. Suppes.. Computer-assisted instruction'in the- Sehoola: potenilalities, prohleme, prospects Oc.ieber.29; 1965.-

82- R. A...Kir:chit, J Townsend J Vellott Jr and-R. 6. Atkinson kiflueeie of correlated vistial cuei on auditory:nicer:II detection.

November 2,1965., (Perception end Psychophysies,:1966,

83 P. Suppes, -M. Airman, and'S.1 Green.' ,Aritheietie &illa rind:review:On a Computer-based teletyPe. -November-5, .1965: (Arithmetic Teacher

ripri1.1966;`303309..'
84 P. &aloes and L.-Nyman... ConeePt learning Mithnon-yerhalgamiaufleal srimuli. November 15 1968*,

85 P HoIleee Avitiation on the MiniMulh chlinuire test.: (J;rnith. 1:ychol.,1967-,.3; 377413): .

.

66 13.-Surepee. Aceelerited preemie In elemontary.ithool mathernatice--1. seCond year., Novemben 22,1965: (Esisholoag hi the Scheele, 1966,

87 P. LarenienaMd: F. BInfOrd. Logic' an a dialogical game; NOredese 29, 1945; .
. . ..,

. 88 L. Keller, W. J. TSomson, J.:R. Tweady,.and R. C. AtkInion.' The effeets Or releforcement'interVal ton the imgelsielon of'patied-eaSeelate:
. r , . . .:,.. . ,.

responses. Decembnr 10 1965 (A m fhgeliel 1967 73' 268-2771 ..-: 1 ' -:

89 J. I. YMIOtti:Jr. '. Some affects -on neneaattagent,etrairmialiamen UrObokiiitsi learning. Deoemher 15, 1965.-, ,...,.
, .

90 P. Sepia* and G...Grolin. :, SOO eiainlee Made1*. far 'firet4aMide lerfornumee:dehi:OnsInipte addition'. feat's'. Jannaii'14 ,1966. (In j..".M.-Seindiea

(Ed.),, Riseircii.Iii Metheiiihm Edateithin.lWaigingtneD.0.2.RCT44, 1967. rip.; 357--43-........-'.
.

91 P. Supties;, Inf,reatIon pretreisIng Ind Choice Rehlelor, '. jenuety.31,. 1966. , -, '
.

92 G. Green and.R.O., Sakinton. Madele for optinitstretlieleetninePreeest.,:. Fehruay II, 1966. (Pliehol. Bulletin,: 1966; 66 e 30-320),...... ,,. ,..

93 R. C. Aicinsim and.6. waton.- Gdarpidar7eMeIeried Inetractien fkinitill,reldiag:' 5tanfard prOject, :March 17,1966: (ReadlneRitelith '..
., ,,....- ,:.: --.,,,

Rweleily, 1966, 2; 5725) -: ''.. ,.. ' -,, ..

94 P. SuPpie. ProbablIlstIO'Infirenie and thl'oencept:Of tete(evidenia'. *Mimi!, 25, 1966. . (In J. 'HIntIkkik and 'F,'.. Suppes (Eciii.); Aspeetir:Of

'Indiiethea'1,...41_e.' kiieterdinh 'itirth4leiiiincil,ebliiiiiina Co.:..f.96.4.:...Pii..:496......1; -':.-..':::',... ''' ' --. '
95, P. SuPPes.

Thlincloraitisimetherilith/9646hi101, t6lit6lialittif.: L'Ai711',1;,.1966. Cili -12silli 4 Axleinitleitind kiibleM 5Cleing 6i ,Maifiernatihs:

The Canfeariem:Board Of the kitheinitieel 5clerietre;-Washington; D. C. Glen Mid Co.; Iii-66. Pp. 6976:
. . : ,: :

(Continued on-inside baik cover). 2

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE

IN-
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-

'," DUCH) EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-

.* INATING IT POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY

um
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY

kirli

C:3

IAJ
A GENERALIZED INSTRUCTIONAL SYSTEM FOR

ELEMENTARY MATHEMATICAL LOGIC

by

Adele Goldberg

TECHNICAL REPORT NO. 179-

October 11, 1971

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part is Permitted for

any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STAN7ORD UNIVERSITY

STANFORD, CALIFORNIA

Acknowledgments

The effort expended in developing this instructional system was

shared equally by Tobin Barrozo and myself. I would like to thank him

for his endless patience. Note that Tobin provided the annotation to

Appendix V.

We would also like to thank Leon Henkin for suggesting the original

idea for the program, and Patrick Suppes for his courisel.

The research in this report was supported by National Science

Foundation Grant GJ-443.

4

Table of Contents

Acknowledgments

Part I. Introduction 1

Part II. Specifying the Formal System 7

1. The Vocabulary 7

2. Implementation of Proper Substitution 13

3. Instantiation Procedures for Nonlogcal Axiomatic

Theories 20

4. Axioms and Theorems 23

Part III. The Command Lamguage
26

1. Introduction 26

2. Proof Procedures 33

3. Primitive Rules of Inference 38

4. Generalized IntercLange Rules 45

5. Derived Rules of Inference 47

6. Miscellaneous Commands 58

7. Interfacing Mechanical Theorem Provers to the

Instructional System 59

Part IV. Defining Problems
EA

1. Prespecified Curriculum-TEACHER Mode 65

2. Commands for Requesting Problems in the STUDENT

mode 68

Part V. Summary of the Command Language 70

References
76

Appendix I

Appendix II

Appendix III

Appendix TV

Appendix V

i i

PART I. INTRODUCTION

This report describes a computer-based instructional system for teaching

the notion of mathematical proof. The system is capable of handling formalizations

of the fuli predicate calculus with ideatfty (and, with itinor work) definite

description). Designed as an instructional device (a course in number theory is

presently being prepared)) the program is also the basis for a number of research

projects involving the use of mechanical theorem-provers for teaching theorem-

proving. The intention here is to present, in detail, the entire system: the

program as written in the LISP programming language [McCarthy, 19631 for a PDP-10

computer. Instructions on how to use the system for both research ana teaching,

block diagrams of key program routincs, and example curriculums are included.

The purpose of this report is to provide enough detail so that versions in other

laLguages for other computer systems may be programmed frrm the information

offered here. A a result) subsequent sections are dense with descriptions

of particular routines of the instructional program. While current research on

interfacing various theorem-proving programs are mentioned in this paper, they

will be reported on in more detail elsewhere.

The underlying foundation of first-order logic of this instructional system,

like the Institute for Mathematical Studies in the Social Sciences (IMSSS) logic

and algebra Program [Suppes & Binford, 1965; Suppes; Jerman & Brian, 1968,

Appendix I; Suppes & Ihrke) 1970; Suppes, 1971]) is a natural deduction

treatment. The main thrust of both programs is to let the student construct

proofs or derivations. The student has a simple command language made up of

mnemonics that name axioms and theorems, rules of inference, and proof

procedures. The user can type commands that reference specific lines of the

proof or derivation and that specify occurrences of symbols and terms within

a. line. If the commands are correct, the program generates new lines of the

proofs or derivations. By these means, the student can generate any line

regardless of its relevance to finding the problem solution. The freedom to

use commands means that the program rejects all ideas of right and wrong proofs;

the student can follow any one of a number of solution paths. But this freedom

means that the program is not aware of what the student is doing. It may mean,

aside from prestored hints, that the program cannot.offer the user (the student)

any help in completing the derivation. 171 an attempt to solve this problem, a

mechanical theorem-prover that generates solutions of the algebra problems was

1 6

developed. The theorem-prover is employed as a proof-analyzer that examines

incomplete derivations done by students and gives the students hints or advice

on how to utilize their own partial proofs to arrive at complete ones. Details

of this theorem-prover will appear in Goldberg [1971].

The core of this instructional program is a set. of routines that permit

the user to construct proofs or derivations. The program is a natural successor

to the IMSSS logic and algebra program, and many of its features result from

experience obtained in schools running that program. Unlike the logic and

algebra program, this instructional system oan:be characterized,as more than a

proof checker. It is a more powerful interpretive system in which an individual,

be he student, teacher, or reseErcher, can develop and then study a nonlogical

axiomatic theory along whatever lines he himself specifies. The program allows

one to build the command language for constructing proofs; the user can specify

a vocabulary and a set of axioms with corresponding names: prove and name

theorems and lemmas, and derive new rules of inference. The program, which

"knows" only primitive rules of rxedicate calculus, consists of routines that

compute and learn new commands from the well-formed formulas of the system.

When the user attempts to construct a proof within the system he so specifies,

he types commands from the command language he built himself. In order to

interpret such commandb, generalized processing routines check each command

for correct syntax and usage and compute appropriate error messages if the

command is not a valid one.

Both the command language and a curriculum can be constructed by a teacher.

The curriculum can be a course, say, in number theory or elementary axiomatic

geometry. The student follows the curriculum, but he always has the option of

interrupting the linear sequence of problenm and making up his own problems.

The student might avail himself of this feature of the program when (a) he wants

to redo a problem to assure himself that he understands the proof procedures

being introduced; (b) the problems are too hard and he wants to try some easier

ones before continuing with the teacher's problems; (c) the problems are too

easy and he wants to try more challenging ones; or (d) a problem requires a

subsidiary derivation. The s-Wdent may prove the formula and name it as a

lemma, thereby simplifying the original problem by using that lemma. Here,

the distinction between a teacher and a student becomes a narrow one, because

the student himself can enlarge (or ini7!-.ially specify) the command language or

invent a "curriculum" for himself and his classmates.

The principal advantages of this program are twofold. First, the generality

and flexibility of tne prowram provides the user with a sort of experimental

laboratory in which to explore new ideas (or investigate old ones) connected with

formalized theories. The student with same of his own notions about constructing

-Pormal systems can readily test them in a systematic and unambiguous manner:

the program acts as a tireless proof checker. Second, CAI programs are usually

based on a curriculum that is organized around strictly frame-by-frame, or

branch-on-a-predetermined-algorithm,
strategy. This mode of teaching can

sometimes be too restrictive and somewhat lass informative. We hoped to provide

a freer structure in order to give the more innovative students access to those

computational facilities available to the teacher.

The interpretive tools of the system "understand" two languages. The first,

call it C, is the set of commands used in constructing proofs or derivations and

is defined in M, the second language. A block diagram of the program is presented

in Figure 1. With M, the user is able to AXIOMATTZE a theory, i.e., to specify

Insert Figure 1 about here

(a) the class of nonlogical constants, and (b) a class of axioms. It is assumed

that the logical system is always the foundation on which new theories are built,

but the symbols representing the logical constants are specified by the user.

The names of axioms and the well-formed formulas derivable from the axio.z

(theorems and lemmas) are members of C. Also; M enables the user to derive rules

of inference from axioms and from established thecreas and lemmas. These new

i-ules are added to C. Thus, C is further augmented by the basic logical system,

which is outlined in Part III.

After the command language for constructing derivations and proofs is

specified, the program takes on the role of a proof checker. This is the DERIVE

part of the program. In the DERIVE stage, the user types a command and expects

the program to generate a line of derivation. 2his may involve either requests

for substitution instances of axioms or previously proved theorems, or

references to a set of previous lines in order to infer a new one. The program

accepts the command, checks to see that its syntax is correct, and, in attempting

to carry out the command, checks to make sure that the application is proper.

3 8

send a
command j generate

a line

IDERIVE MODE

(to construct prooft)

INTERPRETER for he

COMMAND LANGUAGE

PROBLR4 mode

(to present
the problems)

INIT mode
(problems specified
by the students at
run time)

speeify the
non-logical
axiomatic theory

AXICMATIZE mode

(to,specifi the theory)

specify the
problois and
questions

PRESTORED
CURRICULUM

Fig. 1. Block diagram of the instructional
system.

9

If the syntax of the command is not acceptable, the program has a simple method

for giving syntactic error messages. The command cannot be executed if an

application error is detected. In this case, the program has a method for

computing the appropriate error message. This computation is necessary because,

;ypically, the program interpret3 commands it knows only implicitly.

Figure 2 shows a block diagram of the routines monitoring the teacher- and

student-user modes and presents a more detailed picture of the control structure

Insert Figure 2 about here

of the program. The history of the student's past performance is distinct from

the collection of any data (that is, to collect exact user protocols). The

profile consists of information on the last problem solved, the last theorem

proved, rules and axioms specified by the teacher that the student has been

taught and therefore is allowed to use, and the student's own derived rules of

inference and lemmas he may have proven. This information is all part of the

comnand language the student is building, and it can be retained for all future

work.

The distinction between teacher and student is not a hard and fast one._

Conceivably, an individual may act as both the teacher and the student, setting

up a theory in which he wants to try to construct proofs. Or a student may

try his skills on specifying a curriculum for his fellow classmates. It is

possible that the teacher specifies the vocabulary and then gives the student

a set of formulas. The student is told to choose no more than N formulas as

axioms and then to prove the rest from these axioms, the primitive rules and

procedures, and any new rules he derives. Although this is an instructional

technique with which this instructional system has already been used, it will

not be described here.

The remainder of this report is organized into three parts. In the first

part, the components of a first-order theory and the methods for specifying it

are explained. The reader who is mainly interested in how a user constructs

proofs might well skip this background material. The second presents the

structure of the command languLge, C, with explanations on how to use the

proof procedureo and primitive rules of inference, and how to derive new rules

of inference. There is a problem, viz., the kinds of error analysis routines

5

1 0

"WHO ARE YOU?"

FLAG d- Student or
Teacher

"PLEAst TYPE YOUR NUMBER"

1STUNUM d- <number>

FLAG
=T?

Yes
TEACHER
MODE

No - STUDENT MODE

Can this <number> act
ai a teacher?

No YesI
"DO YOU WANT TO CREATE
OR ALTER A THEORY
(TYPE C OR A)?"

THEORY NAME?
CURRTYPE
<name>

11.---

Read in the teacher's
file

F/N

logout specify the
vocabulary of inference

REQUEST COMMANDS

t
VOCAB AXIOM TIMOREM

RUIE

derive a rule

Get student
profile

NCT
OTC

Check student
name

CANNOT_ cic

"CALL PROCTOR"
Readin student's
.teacher's file

CLOGOUT.)

Fetch problems from
curriculum file

QUESTION

Present
problem

DERIVE

Present any
premises'

Get answer

CONSTRUCT PROOF
I

11.1 Student types a command

Is
command
= 'KIT? Yes

Save present
problem

Is command
. FIN?

Student .

requests
problems

DISPATCH
command

No Solution
found?

REQUEST
= FIN?

Yes

Derive, prove or
rule eommands

Restore
curriculum
problem

Fig . 2. Program struct ure .

*la
6

required in order to effectively teach the student the command language. They

are of two kinds--errors of command syntax and errors in applying the rules of

inference, especially the derived rules. The error analysis routines are described

in this second part. Finally, the language for specifying problems is defined

with examples taken from elementary algebra.

PART II. 3PECIFYING THE FORMAL SYSTEM

1, The Vocabulary

The program is limlted to purely symbolic languages, where each identifier

is a string of one or more alphabetic or special characters. The first step in

developing a formal language is to define a meaningful expression. There are

two kinds of expressions, terms and formulas. In order to give a precise

characterization of a term or a formula, the user might specify the primitive

vocabulary of the language, i.e., the user must unambiguously define each

individual constant and variable, each operation symbol and each predicate

letter. In addition, the list must include representations for the logical

constants.

Associated with every symbol, except the individual variables, is a fixed

DEGREE, and attached to every individual variable is a TYPE label.* These two

elements are all that is needed to build a syntax-directed analysis routine to

determine if a string constitutes a well-formed expression in the language.

Every language includes three special characters that serve as delimitors--

left parenthesis 1(1, right parenthesis 1)1 and comma ',I. A check for precedence

relationships is not included in the analysis. Unless expressions are explicitly

grouped using the three special characters, the routine performs a simple left-to-

right scan. Thus expressions of the formAxB+Care parsed asAx(B + C) and

not as (A x B) + C, which is the usual parse if hierarchy tables are used-.

A DEGREE is an ordered quadruple <I m n p> such that i and n are non-

negative integers, and n and p are (a) any nonatomic element if the corresponding

operation symbol, logical constant or predicate letter p represents a binary

infix relation; (b) nonnegative integers otherwise. Formulas and nonatomic terms

are formed with the aid of constants called "formula-makers" or "term-makers"

*With some modifications, this notion is borrowed from Kalish and
Montague (1964).

7 12

according to the kind of expression they generate. In the associated DEGREE,

i is either 0 or 1 according as the constant is a term-maker or formula-maker;

m, n, and p, respectively, are the number of immediately following variables,

number of terms and number of formulas that the constant demands. If m V 0,

then the constant is a binding operator. The individual variables are atomic

terms. Members of the set of integers are always considered terms, but if TYPE

labels are to be considered, their TYPE label must be specified by the user

(in the usual interpretation, the integers have type 'ALGEBRA or IARITHMETIC').

The general mathematical characterization of terms and formulas is embodied in

(1) through (8) below (Kalish & Montague, 1964, p. 272. Items (2)-(4) are their

characterization of a term and a formula.)

1. The sequence of three dots, '...', is a variable.

2. Every variable is a term and every numeral is a term.

3. If 5 is aiconstant of DEGREE <0 m n p>, are

immediately following variables, p1 n
are terms,

. . .,0 are formulas, and m, n, and p are nonnegative

integers, then

balaM!31-13rill.'"Ip
is a term.

4 If El is a constant of DEGREE <1 m n p>, ai,..-,Cem are

immediately follawing variables, 131,...,Pn are terms,

a
1 p

are formulas, and m, n, p are nonnegative

integers, then

Sa alp
1

.41
ri 1
a ..a

p

is a formula.

The following restrictions and additions to the characterization of terms and

formulas handle formally what is usually considered informal notation conventions.

5. If m is nonzero, n and p must be nonnegative integers.

Then the terms end formulas are defined as in (1)-(4).

6. If m is zero and n is nonatomic (we use n =

then p must be zero and the constant represents a

binary infix relation such that

a. if 6 is of DEGREE <0 0 (2) 0>, and P1,p2 are terms,

then pisp2 is a term;

b. if 5 is of DEGREE <1 0 (2) 0>, and Pl,P2 are terms,

then P 5P
1 2

is a formula.

7. If m is zero and p is nonatomic (we use p = I(2)1), then

n must be zero and the constant 5 represents a binary

infix relation such that-if is of DEGREE <1 0 0 (2)>

and 01,112 are formulas, then cfpcf2 is a formula.

Hence, (1)-(7) is an exhaustive characterization of expressions in the language:*

If this characterization were, in fact, implemented on the computer, we

could easily have as a well-formed formula in the language the expression FaG,

where F has DEGREE <1 0 1 1> and G, <1 0 0 0>. By using the comma and the

parentheses as delimitors or punctuation marks, we can write the expression

a more readable format. Thus, an expression transcending first-order

logic is acceptable. For our purposes this is undesirable. Admittedly, the

parsing routine is a realization of (1)-(7). .ian eighth restriction is imposed:

8. n is zero if and only if p is nonzero.

So, with the eighth restriction included, any sequence that follows a constant

and the possibly empty string of immediately following variables will be either

a sequence of terms or one of formulas.

To complete the characterization of terms and formulas, the user must

(a) give a list of symbols regarded as constants, together with their degrees;

and (b) name the types associated with each individual variable. For example,

in the case of quantification-free elementary algebra built on sentential logic,

see Table 1. The constants in the table have their usual ,thematical

Insert Table 1 about here

interpretations, and, by the appended definition for binary relations, are

written in the usual way. Note that multiple definition of the minus sign,

is acceptable. In fact, multiple definitions in general may be handled

by careful recomputations in the cases when a particular definition is required.

The element associated with each individual variable is the TYPE. The

purpose of type labeling is to restrict the use of individual variables in the

expressions, e.g., it restricts the range of values of a variable to a particular

universe of discourse. The TM] is a list of labels where each label is used to

A term-maker with degree <0 0 0 (2)> is meaningless.

9

TABLE 1

Elementary Algebra Symbols

Representation on the

Constant Degree standard

<1 0 0 1> NOT

<a o o (2)>

<a o o (2)> OR

-4 <a o o (2)>

<1 0 (2) 0>

<1 1 0 1> A

<1 1 0 1>

<a o o (2)>

<0 0 (2) 0>

<0 0 (2) 0>

<0 0 1 0>

<0 0 (2) 0>

<0 0 (2) 0>

1-5

10

name a list of individual. variables. For example, consider the operation symbol

1+1 with DEGREE <0 0 (2) 0> and assume that 14' requires two algebraic terms.

The user might name the TYPE of an algebraic term with the atom 'ALGEBRA' where

ALGEBRA = (A B C D). The TYPE list, then, consists of the TYPE names for each

term wIlich the term-maker '+' demands. The term formed with '+1 and the two terms

is, in itself, a term that can have a TYPE name associated with it. This type is

called the "computed type." The computed type is also stored on the TYPE list

associated with '+'. Thus, the TYPE for 1+, is a list consisting of three

elements--three names, each of which specifies the TYPE of the argument expressions

and well-formed terms. Given two algebraic terms, the operation symbol 1+, forms

an algebraic term.

A+B is a well-formed term because A and B are algebraic terms. Its computed

type is ALGEBRA, so (A+B)+C is also well formed. Suppose the identity relation

1=' with DEGREE <1 0 (2) 0> has TYPE = (ALGEBRA ALGEBRA NIL). This TYPE indicates

that '=1 demands two algebraic terms. The computed type is NIL, an atom. that

denotes the empty set or the 'don't care' type. In other words, NIL can represent

any TYPE. Formulas, such as those formed by 1=', always have TYPE NIL, and all

formula-makers will have NIL as the computed type. Term-makers must be associated

with a non-NIL computed type and so the atom T was chosento denote the 'don't

care° type for terms.

A=B is well formed. Por this example, if BOOLE = (G H), then G=H is not

well formed. Howeve7, if the TYPE associated with 1=1 were (NIL NIL NIL), it

would not matter what the types of the two terms were and G=H would be well

formed.

The list of all the types associated with the term-makers and formula-

makers is called VARIABLES. If no type checking is desired, the user could

presumably let VARIABLES be a list of all the individual variables and let .9_1.1

the types be NIL. This will not do however. The procedure for proper

substitution for predicate letters (see discussion on page 22) is where problems

would arise. The formula to be substituted for the predicate ir may have a

number of different free variables. Some of these variables may be replaced by

corresponding arguments of Tc; the rest are nonsubstitutable parameters. How does

the interpreter know the difference? Both kinds must ba variables for the parser

to recognize the expression generated by the operation of substitution.

11 1C

So there must always be at least two 1iscs. The first is always named

'PARAM' (for 'parameters) and contains a list of variables that are considered

nonsubstitutable parameters in the procedure for proper substitution for

predicates. All the others can be specially grouped under another TYPE name

(such as BOOLE).

Some simplifications are possible.

1. If a variable can be in two groups, or when a TYPE is the

union of two groups already named, the type checking is

performed both directly (is the variable a a member of

the list <TYPEX) and indirectly (is the variable a a

member of a list whose TYPE name is on the list <TYPE)q)

Therefore, if PARAM are the special parameter-variables

and VARS is a list of all the other variables, VARIABLES

is the list (VARS PARAM). All the atomic terms nre then

recognized indirectly through the type name VARIAMRS.

2. The TYPE associated with '+' is (ALGEBRA ALGEBRA ALGEBRA).

Since all the members of the list are the same, the TYPE

can be written as the single atom ALGEBRA.

By computing the associated types in the above manner, the program

retains thri recursive evaluation procedure for determining well formedness.

This procedure depends on (a) the table of symbols; (b) associated DEGREES;

(c) TYPE parameters; and (d) the list of individual variables. It is possible

to multiply define symbols: if the parse fails inibrming an expression with

respect to one IEGREE, it will continue the search with any other DEGREE

existing on the list for the constant in question. The result obtained by the

parser is a representation of the expression in prefix-list notation. Henceforth,

an expression in the prefix-list notation will be called the PATTERN for the

expression. The PATTERN is the list form of the tree, e.g., (+ A B) for A+B.

Further examples: (= (+ A B) C) is the PATTERN for A+B = C; (= (+ (+ A B) C)

(+ A(+ B C))) is the PATTERN for (A + B) + C = A + (B + C).

That the details for setting up a well-defined vocabulary is tedious is

acknowledged. The cumbersome method presented later for creating and altering

the vocabulary will eventually be replaced in favor of routines for computing

DEGREES and TYPES from user-entered definitions. At no time should a student have I

to go through the 72resent process for specifying the vocabulary.

12

Specifying the vocabulary. As teacher, the user specifies the individual

variables, and the table of logical constants, operation symbols and predicate

letters within the constraints of (1)-(8) above. Under the defining procedures

of the so-called TEACHER mode, the vocabulary can be created, altered by

addition or deletion, or just viewed. This perticular procedure is entered

with the command VOCAB. The procedure is illustrated by the dialogue in

r

Figure 3x-.
This is the first in a series of dialogues in which the teacher

Insert Figure 3 about here

specifies a first-order theory and the student receives and requests problems.

(See Figure 16 and Appendix IV). Unless otherwise stated, sample proofs

throughout this section depend on the vocabulary specified in Figure 3.

Observe that the teacher has one last option with regard to the form of

the formulas printed out to the student. In many cases (notably all first-

order theories), it is common mathematical practice to omit all universal

quantifiers and their variables if the scope of the quantifiers is the entire

formula. Upon requestfby the teacher, universal quantifiers that govern the

entire formula can be suppressed.

2. Implementation of Proper Substitution

The instructional system includes routines that are realizations of the

definitions of bondage, freedom, closure, proper substi-Lution for free

occurrences of variables and proper substitution for predicate letters.** The

procedures required in order to carry out the two kinds of substitutiois will

be discussed. First, some definitions.

Definition 1. Dummy variables are additional variables not in the user-

defined vocabulary of the system. The dummy of a variable

is formed by concatenating the character '%' at the beginning

and end of the variable. Thus A becomes %A%.

4q1he vocabulary and problems were chosen from exercises given by Professor

Patrick Suppes to students taking an intermediate level course in logic.

-Standard terminology will be employed. The reader can consult Kalish and

Montague as well as countless other books on logic. Definitions, unless to

describe implementations, will not be repeated here.

13 18

*(START)
WHO ARS YOU OTYPE S OR TIT
TS
PLEASE TYPE YCUR NUMBER.
* SS
DO YOli RANT TO CREATE OR ALTER A THEORYT(TYPE C ORA)
* CS

THEORY NAME?
4RHS

HI...
IN SETT/AG UP A FIRSTORDER THEORY YOU MUST SPECIFY
THE VOCABULARY AND THE AXIOMS. THEN YOU CAN CHOOSE
A SET OP WELL-FORMED FORMULA:5 AS THEOREMS. AND DERIVE
NEW RULES OP INFERENCE FROM THESE THEORENS. THE'
COMMANDS ARE) VOCAlio AXIOM. THEOREM. AND RULE. TYPI

FIN WHEN YOU ARE THROUGH.

tsVOCABS
YOU ARE SPECIFYING THE VOCABULARY FOR A
FIRST...ORDER THEORY. WE WILL BEGIN BY
SETTING UP THE TABLE OF OPERATION SYMBOLS.
PREDICATES. AND LOGICAL CONSTANTS.
DO YOU WANT TO CREATE.ADD.DELETE.VIEW.
OR FINISH/ TYPE C.A.D. V. OR F)

*CS
FIRST YOU MUST SPECIFY THE LOGICAL CONSTANTS

NEGATION SIGN) SNOTS
CONJUNCTION SIONt siS

'DISJUNCTION SIGN) *ORS
MATERIAL IMPLICATIONS STHENi
MATER/AL VW/VALENCES SIFFS
IDENTITY SIGNS S.S
UNIVERSAL QUANTIFIERS *AS
EXISTENTIAL QUANTIFIERS *ES

NOW. SPECIFY THE NONLOGICAL CONSTANTS. WHEN YOU ARE
FINISHED. JUST TYPE ALTNOOE INSTEAD OF A.NEW SYMBOL.

SYMBOLS *BS-
DEGREE) *11 0 3 OIS
TYPELISTS *NILS

SYMBOL) *RS
DEGREES SO1 0 0 OIS
TYPELISTI *NILS

SYMBOLS SFS
reaRzes 'Put 0 2 OTS
TYPELISTI *NILS

SYMBOL) *PS
DEGREES *(1 0 0 0)5
TYPELISTI *NILS

Symms *FS -

DEGREES *(O O 1 (1)s
TYPELISTS *TS

SYKBC2.11 *NS
DEGREE, *CI 0 1 OIS
TYPEL/STI *NILS

SYMBOLS SL
DO YOU WANT TO CREATE.ADD.DELETE.VIEW.
OR FINISH? TYPE CsA,D. V. 011F)

SAS
SYMBOLS *BS
DEGREES *CI 0 3 DIS
TYPELISTs *MOON POINT POINT NIL/S

Fig. 3. Specifying a vocabulary.

Figure 3, continued.

SYMBOL) *S
DO YOU WANT TO CREATE.ADDOELETE.VIEW.
OR FINISH? c TYPE C.A.D. V. OR F)

*DS

MOS
VHICH SYMBOL DO YOU WISH TO DELETE?

INILL TYPE OUT EACH DEGREE. TYPE Y IF YOU
WANT TO DELETE IT. OTHERWISE TYPE ANYTHING.

CB I 0 3 0 CPOINT POINT POINT NIL)). *NOS

CB I 0 3 0 NIL) *Y$
DMZ

*WS

*CS

WHICH SYMBOL DO YOU WISH TO DELETE?

DO YOU WANT TO CREATEADD.DELETE.VIEW.
OR FINISH? C TYPE C.A.D. V. OR rl

DO YOU WANT TO CREATEALTERAR VIEW
THE VARIABLE LISTS OR ARE YOU
FINISHED (TYPE C.A.V. OR F)7

:PECIFY THE INDIVIDUAL VARIABLES
BY PLACING THEN MA LIST WITHAM
ASSOCIATED TYPE NAME. DO NOT USE
THE NAME VARIARLES
END BY TYPING AN ALTITUDE.

FIRST INDICATE A TYPE PARAM
THIS IS THE LIST OF VARIABLES WHICH ARE
CONSTANTS FOR THE PS PROCEDURE. IT CAN
BE AN EMPTY LIST.

TYPE / PARAM

LIST VARIABLES CWITH PARENTHESES)(*CU V/S
MOW AMY OTHERS?

TYPE KWIC *POINTS
LIST VARIABLES (WITH PARENTHESES)(*CW X Y Z/S
TYPE NAME) *ALGEBRAS
LIST VARIABLES CWITH PARENTHESES)t *el% B C DTS
TYPE NAME) *S
WHAT IS THE TYPE LABEL FthR THZ NONNEGATIVE

INTEGERS?
(ALGEBRAS

DO YOU WANT TO CREATE.ALTER.OR VIEW
THE VARIABLE LISTS OR ARE YOU
FINISHED (TYPE C.A.V. OR F)?

*VS
ALGEBRA CA B C 1)).
POINT e X Y Z)
PARAM (U V)

DO YOU WANT TO CREATE,ALTER.OR VIEW
THE VARIABLE LISTS OR ARE YOU .

FINISHED (YYPE C.A.U. OR F)?
COS

DO YOU WANT TO SUPPRESS PRINTING OF
UNIVERSAL QUANTIFIERS WHERE THE SCOPE or TOE
QUANTIFIER IS THE ENTIRE FORMULA?
(TYPE Y. ELSE ANYTHING)
CMS

(*FINS

.*

15

Definition 2. The dummy pattern of an expression is its prefix-list notation

with each free occurrence of a variable replaced by its

corresponding dummy Thus 'A + B = B + A' is an expression

whose dummy pattern is; (= (+ %A% %B%)(+ %12% %A%)).

Definition 3. The occurrence numbex. of a symbol or term in an expression is

determined by counting the occurrences of the symbol or term)

starting at the left of the expression and scanning to the right.

Definition 4. The scope of a constant 5 in a dummy pattern is given explicitly

as any element, either a list or an atom, contained in the list

whose first element is 5.

Definition 5. Let L be the list whose first element is a constant 5 of DEGREE

<1 m n p> such that m 0. Thus by 'L contains the variable

(or _term) al is understood to mean that a is either an element

of the lisl L or, recursively, there is a list LI cutAl that L'

is an element of L and L' contains a.

Definition 6. An occurrence of a variable a is bound only if there is an L

of the sort described in definition 5 such that L contains a.

Then the following determines which variable binding operator 5

of the list L binds a variable a.

1.1f-thevariableaisoneofa.,i=1,...,m in the

expression a1...anaPi...131.?1...ap, then a is a variable

ofclualitificationboundbythatb.111L'a.is
the

(i+l)st element, 5 is the first element.

2. If a does not satisfy (1), but a is within the

scope of b. If a is not also within a list L'

such that L contains L' and the first element

of L' is a binding operator, then 5 binds a.

The system has two functions for testing bondage.

BOUND [IT STRING OM]

BOUND asks if a particular occurrence (OCC) of a variable (IT) is bound in

the expression (STRING). The value of the expression is *T* if the indicated

occurrence of IT is not in STRING; it is NIL if there is such an occurrence,

but it is not bound. If the occurrence is bound, the value of the functions is

the occurrence nu, 1-.?.r of the binding operator.

16
21

Since symbols can be multiply defined, it is possfble that the functions

which FIND ONE of the occurrences of a binding operator will, in fact, find an

o,:currence of a sydbol identical with a-binding operator, but one that is used

as, say, a predicate. Therefore, the program has the task of determining if the

symbol is the initial element of the list L of a well-formed expression, and, if

so, if it is being used as a binding operator. For example, let A have multiple

degrees: <1 1 0 1> and <1 0 1 0>. Then the formula (A X(A X)) is well formed.

The first occurrence of A is a binding operator, the second is a formula-maker.

In the subliet (A X), X is not, of course, bound by the formula-maker A. But,

if A has the DEGREE <1 1 0 0>, it would be.

In order to differentiate between these various cases, the program reparses

the list L. The parse is initially limited to a symbol table consisting

entirely of degrees for binding operators. It is then expanded to the original

symbol table in order to complete the analysis. If L is well formed, the first

element of L is necessarily a binding operator.

BOUNDANY [IT STRING]

Is the variable (IT) bound anywhere in the expression (STRING)? The value

is *T* if there is not any occurrence of the indicated variable in STRING, T

if there is at least one bound occurrence, and NIL if there is at least one

occurrence but no occurrence is bound. BOUNDANY is an iterated application of

the function BOUND.

Definition 7. An occurrence of a variable a is free in the expression 9 if it

stands within cp but is not bound in Cp. Three functions answer

the questions about freedom.

FREE [IT STRING WC]

Is the occurrence (OCC) of the variable (IT) in the expression (STRING)

free? This function calls on BOOND and returns NIL if the value of BOUND is

T or *2*; otherwise it returns T.

FREEEVERY [IT STRING]

Is every occurrence of the term (IT) free in the expression (STRING)?

This function returns T if BOUNDANY returns the value NIL or *12* for all

variables free in the term IT; otherwise it returns NIL.

FREEANYWHERE [IT CTRING]

Is any occurrence of the variable (IT) free in the expression (STRING)?

FREEANYWHERE returns NIL if no free occurrences of IT exist. Otherwise it

17

returns the occurrence number of the first free occurrence of IT.

Definition 8. Two kinds of proper substitution--for free variables and for

predicate letters--are made available by using the procedures

for bondage and freedom of a variable in an expression.

Proper Substitution for Free Occurrences of Variables. Technically, a

symbolic formula * comes from a symbolic formula cp by proper substitution of a

symbolic term p for a variable a if IV is like (ID except for having free

occurrences of P wherever p has free occurrences of a. Implementation of

proper substitution for free variables requires two steps.

1. Only replace an occurrence of a by p if the occurrence of a is free,

Recall that a is free in p if and only if it is not bound in cp. The

function FREE performs this check.

2. Keep the (possibly nonatomic) term p free. For a term to be free,

all free variables contained in the term must remain free after

the substitution.

A flow diagram for the function PSVAR [a B 9] (proper substitution of

variables) is presented in Figure 4.

Insert Figure L. about here

Note on Figu-e 4: In testing for freedom and bondage, the function BOUND

serves to "mark" the specified occurrence of the variable a in the expression by

replacing a with the atom %Q%. It then calls on the function BIND1 to determine

if that marked location is within thr, scope of a binding operator and, moreover,

if that binding operator governs O. To determine if the term p remains free,

PSURbypasses the function BOUND because the location is already marked. PSVAR

must call on BIND1 for each free variable in p.

Proper Substitutions for Predicate Letters. Recall that PARAM is a list of

nonsubstitutable variables. Any variable in the language which is not a member

of PARAM can, by proper substitlItion, be replaced by a well-formed term. For the

following discussion, let PARAM = (W X Y Z). Let A,B,C be individual variables,

and let the predicate letters F and G have degrees <1 0 1 0). and <1 0 2 0>

respectively.

Consider the sentence of first-order logic:

VZEiX (F (X) -4, F (Z)).

18

COUNT 1

is there a. <COUNT>
occurrence of al

Is this occurrence
of a free?

easii.2.0UNT COUNT 1

Substitute 0 'for the
'NARKED' place in 0

Yes

.mpl -COUNT COUNT

'NARK' this occurrence of a
in 0

. list of free variables
Which occur in 0

.0 .., first 'element in Fy .

FY FV - [first element of FV]

Yes
BEIM:
if a were a simple term in the
'NARKED' place in 0, would 0
be free?

Fig. ti.. PSVARDY p 0]
Proporsubstitution of a for p in the
expression 0.

The proper substitution of the formula G(A,Y) for the one-place predicate F in

the above sentence takes place as follows:

1. replace every occurrence of F by G(A,Y);

2. successively replace each variable (which is not an element of PARAM)

of G(A,Y), in order, by the arguments of F. Here, A is replaced by X

in the first occurrence of F; by Y in the second occurrence of F;

3. the resulting expression is:

VZEIX (G(X,Y) G(Z,Y)).

There is one restriction imposed on this substitution operation. No variable that

occurred in the formula G occurs in the sentence we started with. (A precise

characterization of proper substitution for predicate letters appears in Kalish

and Montague (1964, pp. 157ff).)

In the program, the function PSPRED [X 1 cp] carries out the proper substitution

of the predicate q by X in the expression cp. The flow diagram of PSPRED is given

in Figure 5. The routine first checks to see if X and T have arguments in common.

Insert Figure 5 about here

If they do, the function returns NIL. Otherwise, PSPRED computes the list of

aubstitutable variables, L, and proceeds, for each occurrence of n and its

argumentsa],...,anetosuccessivelycallonPSVAR[P.eLa.X] in order to obtain

the proper instance of X which will replace the formula n. If there are no

occurrences of n in T, then PSPRED returns *T*.

The functions PSVAR and PSPRED, which carry out the two klnds of proper

substitutions, are used in constructing derivations or proofs, i.e., they are used

to compute a line which is an instance of an axiom or previously proven theorem.

The next sections explain how these procedures are used by an individual in

constructing a proof or derivation.

3. Instantiation Procedures for Nonlogical Axiomatic Theories

Each kind of substitution procedure (PSVAR and PSPRED) can be characterized

in terms of its use in constructing proofs or derivations, i.e., for obtaining

instances of an axiom or theorem.

Simultaneous Universal Instantiation. An axiomatic theory consists of two

things: (a) the class of nonlogical constants, and (b) a class of axioms, which is

any recursive class of formulas containing no nonlogical constants other than those

in (a). The manner for defining the class of constants was already discussed

20 25

CT 4- 1
VARLIST .4- SORT [free variables in X]

Is VARI/ST 11 [variables in 03 emptyl

Yes

F/ND.[the CT occurrence of n in 01

Is Y a predicate?

to

CT 4- CT' + 1

Replace cr in 0 by

Yes

RETURN an error

There was none it_1320"TRII

ARGLIST 4- (all .but first element of .0)

VARLIST 4- (remove parameters from VARLIST)

x

* 4- PSVAR [(first
(first
*1

ARGLIST 4- all but

VARLIST 4- all but

element of ARGLIST)
element of VARL/ST)

first element of ARGLIST

first element of VARLIST

Fig. 5. PSPRED[X 11 0]
Proper substitution of X for 11 in the expression 0.

(page 7). The class of axioms is composed of a list of well-formed formulas.

Each formula has a distinct name associated with it With Which the user can refer

to the axiom. Below is an example of a class of axioms for a Euclidean geometry

in a one dimensional space. (The vocabulary was already specified where B is a

three-place predicate denoting "betweenness" and the variables W, X, Y, and Z

are points on a line.)

NAME FORMULA

AXA B(X,Y,X) = Y

AXB B(X,Y,Z) B(Z,Y,X)

AXC (B(X,Y,W) & B(Y,Z,W)) B(X,Y,Z)

AXD (B(X,Y,:.) OR B(Y,Z,X)) OR B(Z,X,Y)

AXE ((NOT Y = Z) & B(X,Y,Z)) & B(Y,Z,W)) B(XIZIW)

The command for this kind of instantiation is the name of the axiom or theorem.

The program types out the formula associated with the name and then presents each

distinctfreevariableV.in the expression. The student types a well-formed term

T.. Each occurrence of the dummy V. in the Jummy pattern of that expression is

replaced by Ti. The pattern is then tL ckt, in the usual format, as a new

line of the proof or derivation.

As an example, take axiom AXA. To obtain an instance of AXA, the sequence

of commands is:
AXA B(X,Y,X) -*X = Y

X::W

Y::X (1) B(W,X,W) = X

The PS Procedure. IPS' is the command name of the second kind of

instantiation procedure. It is used to indicate that one wishes to take an

instance of a formula by proper substitution for individual variables and

predicates. The user indicates which formulas or terms are to be substituted for

the predicates and the free variables, respectively, and gives the order in

which the substitutions are to be made.

In the PS procedure, the actual value of the axiom or theorem, not the

pattern, is referenced. The student types:

PS: <name of axiom or previously proved theorem>

If, for some reason, the axiom or theorem is not available, an error message is

printed. Otherwise, the computer types a double colon _indicating that the program

is waiting for a response, and the user gives the sequence of substitutions by

typing either the pair

4The convention is to underline all items typed by the user; all other
information is typed by the computer program.

22

27

1. <Variable> : <Well-formed term>

or 2. <Predicate letter> : <well-formed formula>

where <variable> and <predicate letter> all belong to the vocabulary of the

theory. One or more such pairs could be typed. In fact, no pair can be typed

and the result obtained will be the axiom or theorem itself.

The user indicates the end of the sequence by typing only the ALTMODE ($).

Each substitution request is then applied, in the order in which it was typed,

to the result of the previous substitution in the sequence. The first is, of

course, applied to the axiom or theorem itself.

As an example, take the theorem TH10 to be (d X(F X --)P))4'-.4 C:3 X(F X -4P)),

If F is a one-place predicate and P is a zero-place predicate, the command

sequence to generate line (n) might look like this.

PS : TH10

P Vg2ra.12:21

F : F(A,W)

W : Y

(n) eV X(F(X,Y) -4 VZ(G(Y,Z))))*4 PX(F(X,Y))

.Ny Z(G(Y,Z)))

Line (n) was obtained by

1. Proper substitution of V ZG(Y,Z) for P in T1110 to give

OV X(F X NiZ(G(Y,Z))))4-4,(3X(F X)) -40V Z(G(Y,Z))).

2. Proper substitution of F(A,W) for F in the result of (1):

OV X(F(X,W) -4 Vz(G(Y,Z))))4-2,PX(F(X,W))) -46v gG(y,z)))).

3. Proper substitution of f for free occurrences of W to obtain the

formula on line (n).

2he command procedure PS merely checks to see which kind of substitution is

desired and then calls on either the function of PSVAR (page 17) or the function

PSPRED (page 17) to carry it out. However, once the new line is formed, the

procedure reparses the formula in order to guarantee that all of the computed

new terms agree with the corresponding TYPE parameters of the term-makers and

formula-makers.

4. Axioms and Theorems

Below is a brief description of how the axioms and theorems are added to

the command language when the user is in TEACHER mode, and how the formulas

are processed so that the user can reference them as indicated in Section 3.

2g 23

Adding Axioms to the System. To assist in describing the program procedures

for adding axioms to the underlying nonaxiomatic logical system, some terminology

is introduced or reiterated here. Each axiom has a name, some mneumonic made up

of alphanumeric characters only. The formula cp is the value (VAL) of the name.

If cp is parsed and its closure formed (CLOSED) such that cp has the form

Va1. ar4f, then IV is the matrix of cp. The dummy pattern is formed for the

axiom by dropping the preceding string of universal quantifiers `vr32Yan and

replacing each free occurrence of the individual variables orv...,an in the

matrix by an alphabetic variant--the dummy. This transformed matrix, already

in the prefix-list notation due to the parsing, is the dummy pattern (PATTERN)

associated with the axiom name.

The REQUEST list is the list of variables of generalization (ouv...,a
n
),

i.e., the variables occurring free in the matrix. Each element on the REQUEST

list is in the vocabulary and, therefore, has a TYPE label associated with it.

The list of these types, ordered in accordance with the REQUEST list, is called

the TYPE list. Each of the five elements--VAL, CLOSED, dummy PATTERN, REQUEST

list, TYPE list--is an attribute on a property list associated with the axiom

name.

How -to use the Axioms in Constructing Proofs. A line of a derivation of

proof may be obtained by universal instantiation of an axiom as demonstrated

in Section 3. When the user types the axiom name, the program replies with

the value VAL associated with the axiom. (Note that the axiom as given by the

teacher is always tyred out or, at any rate, the representation preferred by

the teacher is always typed out. In most cases, this would mean omitting any

universal quantifiers whose scope is the whole formula.) Each member of the

REQUEST list is then presented and followed by a double colon to indicate that

the program expects a response from the user. The program, in each case,

expects to receive a well-formed term of the same type as the corresponding

element in the TYPE list. (If the TYPE is "T," any term is acceptable.)

The acceptable terms are paired with the dummy of the variable from the REQUEST

list in order to form a sequence of substitutions.

After all the elements of the REQUEST list have been presented, and the

substitution sequence has been completely specified, the program carries'out

precisely, for each dummy-term pair, the proper substitution of the term for

the dummy variable in the matrix of the axiom (that is, PSVAR [term dummy matrix].)

24 29

1. <variable> : <Well-formed term>

or 2. <predicate letter> . <well-formed formula>

where <variable> and <predicate letter> all belong to the vocabulary of the

theory. One or more such pairs could be typed. In fact, no pair can be typed

and the restillt obtained will be the axiom or theorem itself.

The user indicates the end of the sequence by typing only the ALTMODE ($).

Each substitution request is then applied, in the order in which it was typed,

to the result of the previous substitution in the sequence. The first is, of

course, applied to the axiom or theorem itself.

As an example, take the theorem TH10 to be (V X(F X -4 P))41-4 (3 X(F X -40).

If F is a one-place predicate and P is a zero-place predicate, the command

sequence to generate line (n) might look like this.

PS : TH10

P VZ(G(Y,Z))

F : F(A,W)

W Y

(n) X(F(X,Y) -4 W;(G(Y,Z))))4.4 PX(F(X,Y)) -4

'N/

Line (n) was obtained by

1. Proper substitution of V ZG(Y,Z) for P in TH10 to gi,4e

(V X(F X -4 VZ(G(Y,Z))))4-)...(X(F X)) -4 (Nz/ Z(G(Y,Z))).

2. Proper substitution of F(A,W) for F in the result of (1):

x(F(X,W) -4 'ItZ(G(Y,Z))))440X(F(X,W))) -4(V z(G(Y,Z)))).

3. Proper substitution of Y for free occurrences of W to obtain the

formula on line (n).

The command procedure PS merely checks to see which kind of substitution is

desired and then calls on either the function of PSVAR (page 17) or the function

PSPRED (page 17) to carry it out'. However, once the new line is formed, the

procedure reparses the formula in order to guarantee that all of the computed

new terms agree with the corresponding TYPE parameters of the term-makers and

formula-makers.

4. Axioms and Theorems

Below is a brief description of how the axioms and theorems-are added to

the command language when the user is in TEACHER mode, and how the formulas

are processed so that the user can reference them as indicated in Section 3.

30 23

AddlEE Axioms to the System. To assist in describing the program procedures

for adding axioms to the underlying nonaxiomatic logical system, some terminology

is introduced or reiterated here. Each axiom has a name, sone mneumonic made up

of alphanumeric characters only. The formula T is the value (VAL) of the name.

If T is parsed and its closure formed (CLOSED) such that T has the form

Va
1.

..Var, then * is the matrix of T. The dummy pattern is formed for the

axiom by dropping the preceding string of universal quantifiersVa,,...yan and

replacing each free occurrence of the individual variables in the

matrix by an alphabetic variant--the dummy. This transformed matrix, already

in the prefix-list notation due to the parsing, is the dummy pattern (PATTERN)

associated with the axiom name.

The REQUEST list is the list of variables of generalization (a1,...,a),

i.e., the variables occurring free in the matrix. Each element on the REQUEST

list is in the vocabulary and, therefore, has a TYPE label associated with it.

The list of these types, ordered in accordance with the REQUEST list, is called

the TYPE list. Each of the five elementsVAL, CLOSED, dummy PATTERN, REQUEST

list, TYPE list--is an attribute on a property list associated with the axiom

name.

How to use the Axione in Constructin& Proofs. A line of a derivation of
--

proof may be obtained by universal instantiation of an axiom as dennnstrated

in Section 3. When the user types the axiom name, the program replies with

the value VAL associated with the axiom. (Note that the axiom as given by the

teacher is always typed out or, at any rate, the representation preferred by

the teacher is always typed out. In most cases, this would mean omitting any

universal quantifiers whose s-:ope is the whole formula.) Each member of the

REQUEST list is then presented and followed by a double colon to indicate that

the program expects a responSe from the user. The program, in each case,

expects to receive a well-formed term of the same type as the corresponding

element in the TYPE list. (If the TYPE is "T," any term is acceptable.)

The acceptable terms are paired with the dummy of the variable from the REQUEST

list in order to form a sequence of substitutions.

After all the elements of the REQUEST list have been presented, and the

substitution sequence has been completely specified, the program carries out

precisely, for each dummy-term pair, the proper substitution of the term for

the dummy variable in the matrix of the axiom (that is, PSVAR [term dummy matrix].)

24

31

To continue the example given earlier, the property list of the axiom

AXA is:

VAL B(X,Y,X) -,X = Y

CLOSED Vx(VY(B(X,Y,X) = Y))

PATTERN (-4 (B %x% %y% %x%) (= %x% %11))

BBquEsT (x y)

TYPE (POINT POINT)

apcifying an Axiom in the System. To specify an axiom, the teacher types

and responds to the following sequence

AXIOM

NAME:: <name of the axiom>

WFF:: <a well-formed formula>

After seeing the name of the axiom and checking to see if it is distinct from

any other name associated with formulas, the program types 'WFF::' in order to

request the formula. The formula must be well formed. If it is not, the

request is repeated. If the user changes his mind, he can type an ALTMODE to

get out of the entire command sequence. This escape route is available for all

command sequences in both the TEACHER and STUDENT modes of operation (see

Figure 16).

If the formula is accerted, the attributes for the axiom are computed, the

axiom name is added to the general AXIOMLIST and the program continues. Generally,

in the TEACHER mode, the user specifies curriculum to be presented to other users,

the "students." As such, the program differentiates between the general axiom

list (the list of all the axioms specified by th9....teacher) and the list of

axioms the student may use. An axiom is not placed on the student's axiom list

(and thereby made available to that student for constructing proofs) until a

command to do so is given in the .:-.1...rriculum (see page 63, on Defining Problems).

Adding Theorems to the System. A theorem is a formula of a theory derivable

from the axioms of the theory alone. A theorem is processed in much the same

way as an axiom. Once a theorem has been proved, it can be named and used in

constructing other proofs or derivations. (The same is true of formulas chosen

as lemmas by the student.)

A theorem is used in the sane manner as axioms in the construction of

proofs or derivations. The name of a theorem specified by t-ne user in the

TEACHER mode is always "17-11 concatenated with a positive integer. Thus the

25 32

teacher can order and number the theorems. This is the only case in which a

command name is not an alphabetic string. The program uses the numerical portion

of the command to guarantee that the user is permitted only instances of theorems

which he has already proven. Attached to a theorem name are the attributes VAL,

CLOSED, dummy PATTERN, REQUEST list, and TYPE list. These attribut-s are

computed and used just as for the axioms.

Specifying a Theorem in the System. The format of the command to specify

a theorem if the user is in the TEACHER mode is:

THEOREM

NUMBER:: <positive integer>

WFF:: <well-formed formula>

The formula is processed exactly as that for an axiom. The name of the theorem

automatically becomes 'TH<positive integer>.'

Formulas proven by the user while in STUDENT mode are named at the

completion of the proof (see page 68, Requesting Problems at Run Time).

PART III. THE COMMAND LANGUAGE

1. Introduction

The result of using the language M to specify an axiomatic system is to

build the command language C. The instructional program interprets a sequence

ofwell-formedcommandsC.belonging to C as an algorithm for constructing a

derivation or proof of a formula in the specified system.

Two commands have already been given: (a) the name of an axiom or of an

established theorem, and (b) the procedure PS. If the command takes the form of

a simple mneumonic that was defined as the name of an axiom or theorem, the

program carries out the procedure previously presented (page 22). These cc-'

as well as those for the rules of inference and the special procedures (like

PS), are "executed" by the program with the result that the program generates

new lines of a derivation or proof. Line by line, the user types commands

until the desired formula has been generated.

The command language consists of code for the rules governing substitution

(as already explained), sentential rules and quantifier rules that reflect. the

basic logical system (see especially Appendix II for a summary of these

sentential rules), laws of identity, and rules for definite descriptions.

Specifically these are:

26 .32

1. Proof procedures: conditional proof (CP), indirect proof (IP), and

universal derivation (UG);

2. Six primitive rules of inference: modus ponens (AA), three rules

for quantification (US, ES, EG), two rules for the logic of

identity (IDC, IDS),as well as two interchange rules to permit

the replacement of a well-formed formula or term by an equivalent

formula or term within a line of a derivation or proof;

3. Generalized interchange rules: these permjt an interchange on

the basis of an axiom of theorem. that has the form of a

generalized identity or material bi-conditional;

4. Dlerived rules of inference; and

5. Miscellaneous rules: delete the last line (DLL), enter a line

(ENT), INITiative to request problems is given to the student,

SHOW that a line is a valid inference to make, and HELP the

user complete his proof.

The general syntax for the command language is:

<command>

<line references>

<line references> <command 'name> <occurrence references>:

<other information> $ I <line references> <command name>

<occurrence references> $

: := <line number> I <sequence of line numbers> 10

<sequence of line numbers>

::= <sequence of line numbers> . <line number> I <line number>

<occurrence references>

<occurrence number>I<sequence of occurrence numbers>I0

<sequence of occurrence numbers>

::= <sequence of occurrence numbers> . <occurrence number> I

<occurrence number>

<line number> ::= nonnegative integer (the number of a line already

generated and not closed off)

<occurrence number> ::= nonnegative integer

<command. name> ::= <axiom name> 1 THnonnegative integer> IPS Iwp IGENI

<proof procedure> '<primitive rule of inference> I

<derived rule of inference> '<miscellaneous codes>

27

<proof procedure> ::= CP I IP I UG

<primitive rule of inference> : := RE I RQ I AA j IDC I IDS ES I US I EG

<miscellaneous codes> := DLL I ENT I INIT I SHOW I HELP

<derived rule of inference> ::= string of alphabetic characters (other

than those already reserved)

<other information> ::= <well-formed expression> I <name>d <variable>

If the execution of a command code requires one or more further responses

from the user, the interpreter always types a double colon to indicate that it

is ready to accept the response.

After the user types a command, the interpreter performs a syntactic

analysis of it. If any syntax error is located, the command is ignored and an

appropriate error message is printed. Detecting syntax errors is straightforward,

and the benefit of concise error messages should be clear. These messages can

reteach a particular commandts format. By typing the command name and then

successively making corrections in the syntax as directed by the error messages,

the user could learn to properly format the command.

This initial analysis of a command is sufficiently standard so that message

forms can be stored and retrieved from a peripheral device and the interpreter

can compute appropriate insertions. Three main syntactic analysis routines

make use of these messages. They serve to

1. read in tlie command;

2. dispatch the command to the appropriate processing routine; and

3. check the syntax of the command in terms of the line and

occurrence references.

These three routines are presented as block diagrams in Figure 6. Each circled

number designates an error return from the routine: the error message (as

numbered in Figure 7) is completed and printed.

Insert Figures 6 and 7 about here

The rest of this section contains a detailed description of each of the

five elements of the command language listed above. Included in each discussion

are definitions, program procedures for learning and carrying out the commands,

together with some examples.

28

Form the list of line references

Get the command name

Form the list of occurrence references

Is there anything else in the user's

response?

yes

error, cannot

error, there is no name

error, cannot

no (done)

Is the first character a colon? error, no

yes

Store the rest of the response as

'other information'

(done)

error, there is

nothing after the

colon

Figure 6. Syntax Analysis--
(a) Read in the Comand

tri

29

Does the command belong Process as a general rule--check

to the student's rulelist?
yes w.the syntax; all other errors are

application errors

I

Does command belong to the yes Check the syntax

no

student's axiom list? Any line of occurrence references?

nol

Is the command 'TH'?

no lyes

Has the student

proven this

theorem?

Command e curriculum rules?

no yes

Command e curriculum axioms?

nol yes

Command E special rules?

no no

nol lyes

for each variable Short form:

on the request list

the response may be:

An escape from the

command?

no

The term? error

yes

find distance

of left-hand

side of axiom

in the line

error, cannot

Check the type of the term --error

Evaluate the command:

check syntax

yff expression required? yes, but not there

delete the last line? errors 25-2

quantification rules errors 2
\--I

Figure 6. Syntax Analysis--
(b) Dispatch the Command to the

Appropriate Processing Routine

30 37

error

Check the number of

line references error, not the right number

For each line reference, do:

Is the line nunber a

non-negative integer?

Does tbje line exist in

the proof?

Is the line within the

body of a completed

subsidiary derivation?

ok

Check the nuMber of

occurrence references

no, error

no, error

yes, error --

error, not the right number

For each occurrence reference,

is it a non-negative number? error, no

Is any other information required?

no yes

Does any other Does any other

information exist? information exist?

not_ yes, error no error yes

(done)

E
done)

Figure 6. Syntax Analysis--
(c) Check the Syntax of the Command

38

1. <command name> REQUIRES ONE LINE NUMBER.
2. <Command name> REQUIRES <number of premises> LINE NUMBER.
3. THE LINE REFERENCE MUST BE A NUMBER.
4. THERE IS NO LINE <line number>.
5. YOU MAY NOT UBE LINE <line number>. LINE <line number> DEPENDS ON

THE WORKING PREMISE LINE <line at which the working premise was
introduced> WHICH IS NO LONGER AVAILABLE.

6. YOU MAY NOT USE LINE <line number>. LINE <line number> DEPENDS ON
THE ASSUMPTION FOR UNIVERSAL GENERALIZATION MADE AT LINE <the gen
command precedes this line>.

7. <command name>REQUIRES AN OCCURRENCE NUMBER.
8. <command name> REQUIRES <number of occurrences> OCCURRENCE NUMEERS.
9. THE OCCURRENCE NUMBER MUST BE A NUMBER.

10. <command name> DOES NOT EXPECT A COLON WITH AN EXPRESSION OR SYMBOL
TO FOLLOW.

11. A NUMBER MUST FOLLOW A PERIOD.
12. NO COMMAND REQUESTED?
13. AN EXPRESSION, SYMBOL OR NAME MUST FOLLOW A COLON IN THE COMMAND,
14. THE FORMAT IS INCORRECT. AN OCCURRENCE NUMBER OR A COLON MUST

FOLLOW THE COMMAND NAME.
15. THERE IS NO OCCURRENCE 1N LINE <line number> OF A TERM TO WHICH

THE RULE <command name> CAN T-R APPLIED.
16. THERE ARE NOT <number of occurrences> OCCURRENCES 1N LINE <line

number> OF A TERM TO WHICH THE RULE <command name> CAN BE APPLIED.
17. TRY AGAIN.
18. NOT A WELL-FORMED TERM.
19. THE TYPE OF THE TERM MUST BE <type name>.
20. YOU HAVE NOT PROVEN THEOREM <theorem number>.
21. YOU MAY NOT USE RULE <command name> IN THIS PROBLEM.
22. YOU MAY NOT USE THE <command name> AXIOM.
23. <command name> IS NOT A RULE.
24. <user's response> IS NOT A WELL-FORMED EXPRESSION-.
25. THERE IS NO LINE TO DELETE.
26. LINE <line number> IS A PREMISE AND CANNOT BE DELETED.
27. <term of instantiation> CANNOT BE USED AS A VARIABLE OF INSTANTIATION.

YOU ALREADY KNOW SOMETHING ABOUT <term of instantiation>.
28. <Variable>. WAS INTRODUCED AS AN ARBITRARY INDIVIDUAL FOR THE PURPOSE

OF UNIVERSAL DERIVATION.
29. <Variable> IS ALREADY MENTIONED 1N LINE <line number>.
30. <term> IS NOT A VARIABLE OF INSTANTIATION.
31. <term> IS NOT A VARIABLE OF GENERALIZATION.
32. <term> OCCURS FREE Iff LINE <line number>.
33. LINE <line number> DOES NOT OCCUR AFTER THE LAST GEN WAS REQUESTED.
34. <Variable>. WAS THE LAST VARIABLE OF GENERALIZATION REQUESTED..
35. THERE IS NOT A FREE OCCURRENCE OF <term> IN LINE <line number>.
36. THERE ARE NOT <number of occurrences> FREE OCCURRENCES OF <term>

IN LINE <line number>.
37. THE VARIABLE OF GENERALIZATION MUST NOT OCCUR FREE 1N THE TERM.
38. AT LEAST ONE OF THE OCCURRENCES OF <Alpha> ON WHICH YOU ARE

GENERALIZING IS BOUND 1N LINE <line number>.
39. IMPROPER APPLICATION OF <Command name>.

Figure 7. Syntactic Error Message Forms.

32

3B

2. Proof Procedures

To facilitate the construction of proofs and derivations three derivation

or proof procedures are available. They constitute the heart of a natural

deduction formulation of first-order logic, Two of these, the conditional

proof (CP) and indirect proof (IP), depend on the introduction of a working

premise (WP). The third is universal derivation (U3) in which the user establishes

a universal statement. UG (for "Universal Generalization") depends (as explained

below) on the user's announcing his intention to generalize a particular individual

variable (this is done with the command GEN).

The command language is similar to a programming language; each command

is an instruction to the interpretive system. A well-formed command, executed

by that system, constitutes an application of a rule to construct an expression

in the first-order theory. This defines the construction in terms of purely

mechanical manipulations of expressions.

Associated with the notion of executing a sequential list of instructions

that belong to a (programming) language is the concept of subroutines. A

subroutine is a complicated command that has a name, a possibly empty set of

formal parameters and a body. The body is a sequence of commands that

manipulate the formal parameters. Moreover, each routine is delimited by

identifiers that indicate the beginning and end of the subroutine. Such routines

illustrate the idea of block structuring, or grouping, of commands. In the

usual sense, a block structure is a means of defining the scope of identifiers.

Variables, arrays and definitions may be declared at the head of a block and

have no significance outside this block. The importance of a block comes from

the fact that blocks may be nested, i.e., the beginning of a new block may be

declared within the body of another block. Definitions at the head of a block

have meaning only within that block and any that it encloses.

Clearly the command sequences for obtaining instances of axioms and

previously proved theorems may be viewed as a block or subsidiary routine.

The command name is the name of the routine as well as the beginning delimitor,

the substitutable variables are the parameters and ALTMODE is the ending

delimitor. But this might be carrying an analogy too far. The three proof

procedures described below serve as sharper analogies to programming with

subroutines. In the sequel, consider the command mneumonics CP, IP and UG

as the names of subroutines of a programming language.

33
40

WP. For CP and IP, the beginning of a block is denoted by the simple

command WP. WP itself is an instruction to the program, first, to set up

the mechanisms for specifying the beginning of a proof procedure, and second,

to allow the user to enter a premise of his own into the derivation. This is

a working premise; the lines of the derivation are conditional upon it. The

new premise can be thought of as a formal parameter since it only has meaning

within the block. Once the block is closed (boxed off or completed) by the

ending delimitor (in this case, the command containing the name of the proof

procedure), the premise entered by the WP rule can no longer be referenced as

a line of the proof.

The body of the block is a sequence of arbitrary but finite-length lines

that occur between the delimiting lines, i.e., those generated by the WP and the

CP or IP commands. Once a procedure is completed, the block is closed off and

no line in the body may be referenced as a line of the proof.

Analogous to the notion of the nesting of subroutines, several working

premises may be requested in (not necessarily contiguous) succession. The

program retains the order of this series of WP requests so that only the last

WP entered may be closed i.e., referenced in a CP or IP command. Moreover,

although the user may be able to generate the correct expression for solving

the derivation problem, he has not solved the problem unless all the WP's have

been closed. In other words, like a well-formed computer program, every beginning

of a routine must have a well-defined end. To help the user keep track of the

block structure, the program indents several spaces for each open WP (each level

of incompleted nesting).

The command format for WP is simply the mneumonic:

WP (i) <well-formed formula>

The program types the number of the new line and the user enters a well-formed

formula as a premise.

CP. The user can construct or generate a conditional statement by

introducing the antecedent of that statement as a working premise, byworking

out a derivation of the consequent in the usual manner, but making it conditional

upon the entered premise, and by then using the CP rule to finally derive the

conditional statement. The format for the command is

<line a>. <line b> CP

where <line a> refers to the last working premise introduced and <line b> refers

311 41

to any line of the derivation. Of course, <17'Jle a> and <line b> can refer to

the same line. The formula on <line a> becomes the antecedent and that on <line b>

the consequent ofiteconditional statement formed. CP indicates that the

particular WP is now closed. The delimiting line is <line b>. If <line b>

comes before <line a> in the derivation sequence, then the body of the block

is empty and only <line a> becomes unavailable.

As an example, a proof of R -4(R OR P) is provided in Figure 8.

Insert Figure 8 about here

IP. In order to derive a formula T, the user may introduce the negation of

cp as a working premise (WP). He then attempts to construct * and (NOT (r) as two

lines of the proof or derivation, thus establishing the logical truth of the

negation of the working premise. This is known as a proof by contradiction,

or reductio ad absurdum.

The IP command requires a sequence of three line numbers to precede it as

follows:

<line a> . <line b> . <line c> IP

where <line a> refers to the last wcekinE premise entered and <line b> is the

denial of <line c>. The program geaerates as a new line the denial of the

premise on <line a>. An example of 9. proof tling the indirect derivation

procedure is given in Figure 9.

Insert Figure 9 about here

GEN and UG. Universal derivation, or generalization (UG), permits the

user to establish a universal statement, i.e., one of the formVaT, as a line

of the derivation or proof. The beginning of the sequence of commands for

obtaining this universal statement is denoted by the command GEN. In using this

command, the user indicates which variable, a, he wants to introduce as an

arbitrary individual for the purpose of universal derivation. The command format

is:

GEN : < a >

42 35

DERIVE R -s(FI OH P)

CI) *RS

swIFDS
ss*PS (2) H Oh P

ss1.2CPS (3) H sCR OR P)

confaxi...

Fig. 8. Conditional proof.

DERIVE R ORCNOT R)

s*WPS CI) sNOT (R OR CNOT a)),

t*wPS (2) *RS

ssVPS (3) *HS

1.1.3FDS
rs*NOT RS (4) R OR(NOI R)

1$3.4.1IPS (5) NUI R

ss2.2.5IPS (6) NOT R

1.1.6FDS
ss*RS (7) CNOI RFOR

s*7CDIS (8) R OR(NU1 R).

s*I.I.8IPS (9) B ORCNOI h)

CORRECT...

Fig. 9. Indirect proof.

DERIVE A Y(F Y F Y)

s*PS CI) *F XS

s*GENIXS
X CANNOI BE USED As A VARIARLE.OF
OENERALIZAlIONS II IS NOT AN ARBI1RARY INDIVIUUAE.

ssGENIYS.
OK

s*UPS (2) $F YS

sse.PCPS (3) F Ys Y

ss3UGsYS (4) A YCF Y s F Y)

CORRECT....

Fig. 10. Universal derivation.

43

The notion .of hestin8 CfNls is like that of the WP's so the discussion on block

structures will not be repeated except to note that GEN's and WP's can be

nested within one another, i.e., one or more working premises may be entered

after the GEN command is accepted. However, the universal derivation introduced

by a GEN request cannot be completed unless all such working premises are

closed. Conversely, GEN commands that occur after a working premise is entered

must be closed before the external WP can be.

This derivation procedure is intended to capture the proof te.chnique in

which one demonstrates that 2.2222- object has a certain property by showing that

an arbitrary object from the universe of discourse has the property. Consequently,

the interpreter must ensure that the object a indicated for this purpose is

actually an arbitrary one. This is done by determining if a occurs free in any

antecedent line cpi (FREEANYWHERnev.0). An "antecedent line" is defined as any

line occurring in the proof which has not already been closed off by one of the

pairs WP-CP, WP-IP, or GEN-UG. If the a is accepted, the program types 'OK'.

GEN does not generate a line. The main reason for its use in the

generalization procedure is to prevent the user from performing a number of

unnecessary steps; for example, without GEN, the user may discover several

steps later that he cannot generalize over a variable as he had intended.

Furthermore, by introducing a into the proof, the user is prevented from using

a as a variable of specification in ES (existential specification rule, page 40),

which violates the restriction on the latter rule. This GEN announcement is

one method used to reduce the amount of irrelevant work and at the same time

emphasizes the care needed in introducing new variables.

After the user has constructed the matrix IV of the desired universally

quantified formula, he types the command

<line a> <a>

where <line a> refers to the line contajming IV. This line must occur after the

last GEN and the <a> must be the last variable of generalization specified.

Thus, the new line is formed. A simple example of GEN-UG is given in Figure 10.

Insert Figure 10 about here

Note that GEN serves as a delimitor so that if the user types an improper UG

command an appropriate error message is given.

37 44

3. Primitive Rules of Inference

Modus Ponendo Ponens (AA). By the classical rule of modus ponens, a

symbolic sentence T may be inferred from the symbolic sentence * cp and *.

If a derivation consists of lines

(1) P Q

(2) P

then, the command 1.2AA generates the new line: (3) Q. The mneumonic AA

stands for "affirm the antecedent," which suggests the semantical analysis of

the rule.

The AA command is processed in the same manner as a derived rule of

inference. This procedure is discussed in detail in the section on derived

rules of inference (page 47ff.). Rules of inference for sentential logic

include Form a Conjunct (FC), Form a Disjunct (FD), Double Negation (DN),

and Deny the Consequent (DC), to name a few familiar ones.

Rule of Universal Specification (US). The implementation of the three

rules for quantification theory reflect the standard characterizations of these

rules. In the following, let a be a variable, p a term, and T and * formulas.

The principle of specification permits the deduction of some symbolic

formula * from a universal statement Vap. The rule of universal specification

US (sometimes referred to as universal instantiation) states that * comes from

cp by PSVARRi a T3 for some term p. The term of instantiation is p.

The intuitive content of this rule may be expressed in the slogan "what

is true of everything is true of any given thing." The only restriction on D

is that it can be properly substituted for the indicated unlmersal quantification

variable. The procedure for carrying out the rule must also ensure that the

computed type for p is consistent with that for a. The command format for US is

<line number> UE

<a> :: <3>

where the line reference must contain a universal statement. The interpreter

types the variable of generalization a found on the line and then a double

coLon to request the user enter p. The new line is * where = PSVAI[a 9].

A Eimple example of this command is:

38

(1) v x(F x x(G(x,y)))

1 US

X::Z (2) F(Z)-43 X(G(X,Y))

Rule of Existential Generalization (EG). The rule of existential generalization

(EG) permdts an inference from some expression * to an existentially quantified

statement Eaa 9, where, for some term p, p contained in *, * = psvoiap cpj

The formula * may contain more than one occurrence of p and it may not be

the case that the user wants to generalize over all such occurrences. In

typing the command, the user must specify a sequence of occurrence references

for each occurrence of a p in y that is to be considered.

In order to apply this generalization process FREE[* OCC] must equal T for

each referenced occurrence OCC of p. Moreover, a cannot occur free in CFREEANYWEEME

= NIL). Otherwise, in substituting cefor p in * to obtain 9 and in forming

the existential statement 2a9, * will not be obtainable by PSVAle a tp].

The format for the EG command is

<line number> EG <Sequence of occurrence references>

<a> : <43>

The user states on which line to find the * and specifies each occurrence of Q

to be considered in the generalization procedure. The program then requests

the user to type the variable of generalization a followed by a colon followed

by the term p. For example:

(1) G(X,Y) Y

1 EG 1.2

Z:Y (2) E3Z(G(X,Z) -4F(Z))

1 EG 1

Z:Y (3) EiZ(G(X,Z) --F(Y))

but the request

1 EG 1.2

X:Y could not be carried out since this would generate the

expression EIK(G(X,X) -*F(X)) in which the second occurrence of X is no longer

free. Consequently, substituting Y for X in this expression does not yield the

Original formula of line 1.

46
39

Rule of Existential Specification (ES). In order to infer that what is

true of something is true of a particular thins, the user calls on the rule

of existential specification (or instantiation) ES. This rule lets us deduce

from the existential statement:3aq) the formula *, where * = PSVAR[paip] for

some variable p. Since it is possible to generate fallacies in identifying

variables, a restriction is placed on the variable p: p must be new to the

derivation; it must not have occurred in any previous line. (This includes

nonantecedent lines and is somewhat overly cautious.) Included in the meaning

of "occurred in any previous line" is the restriction that the user must not

have stated an intent to universally generalize over p. Like the US rule, the

interpreter must ensure that the computed type for p is consistent with that

for a. The command format for ES is

<line number> ES

<a> ::

where the line referenced must contain an existential statement. The program

types the variable of generalization a on the next line and requests the

user type p. If p has occurred in any previous line, an error message is

printed. Otherwise, * is computed from IT by PSVAR[PaC.

An example of the command sequence is:

(1) :3Y(F Y) G X)

(2) BY(c y)

(3) G X

2 ES

Y::Z (4) G Z

2 ES

Y::X

(Z does not occur in lines 1, 2, or 3.)

(The error message tells where X was
ffrst encountered.)

X CANNOT BE USED AS A VARIABLE OF INSTANTIATION.

YOU ALPEADY KNOW SOMETHrNG ABOUT X.

X IS ALREADY MENTIONED IN LINE 1.

47

The Loic of Identity (IDC and IDS). Two new primitive rules of inference

are needed to obtain a formulation of the first-order predicate calculus with

identity. (These rules occur in Kalish and Montague, 1864, p. 220.) No

attempt is made here to justify the choice of these two primitive rules from

among the several possible ones other than to demonstrate that, with these two

rules at our -disposal, the interchange laws (RE and RQ), the law of symmetry

(CE), the law of reflexivity (LT) and transitivity of identity (TR) are

derivable as rules of inference. Of these five rules, only RE and RQ are

described in detail. Use of CE as a rule of inference should be ,:lear from

the discussion on derived rules of inference and the property lists given in

Appendix II.

The rules have been named IDC and IDS, with the 'ID part standing for

'identity'. As shown below, the command format for the first rule, IDC, is

similar to that for EG and represents a form of conditionalizing for identity.

Likewise, IDS is a form of specification where the term of instantiation is

already specified within the formula itself.

The command format for IDC is:

<line number> IDC <sequence of occurrence references>

:: Got> : <D>

where <line number> points to the formula *. In order to apply this rule for

each occurrence reference OCC, FREE[13 IV:MO] must equal T. The user specifies

the variable of generalization a and the term p such that a is not contained

in p. Then cp is derived from * by replacing each referenced free occurrence

of p by the variable a. Since * must be obtainable by PSVAR[Pacp],'the rule

call be used only if a does not occur free anywhere in *.

IDC permits the following possible sequence of lines to occur as part of

a possible derivation.

(1) F(A) premise

(2) X=X premise

1 IDC 1

B:A (3) NOJB(B=A -+F(B))

2 IDC 2

: Z:X (4) vZ(Z=X -> X=Z)

The command format for IDS is

48<line a> IDS

41

where <line a> points to a formula of the formVt.:(a=13-4T). The new line

generated is * where * comes from cp by proper substitution of p for a.

Figures 11, 12, and 13 establish that the interpreter, with IDS and IDC as

primitive rules of inference, captures first-order logic with identity.

Insert Figures 11, 12, 13 about here

The proof of the law of reflexivity (d x(x=x)) is shown in Figure 11. If this

law is named as a theorem, say LT, then it may be used to prove CE, the

symmetry law (Figure 12). And that identity obeys the transitivity law, TR,

is proved in Figure 13. The three formulas (LT, CE, and TR) are the first-

order axioms sometimes taken as definitive of identity.

Replace Equals Rule (RE). It can be shawn from the rules of identity that

X= Y -4(F(X) = F(Y))

where F is any 1-place operation symbol (see Figure 14). This is Euclid's

Insert Figure 14 about here

postulate that corresponds to saying, if equals are substituted for equals,

the result is equal. As a derived rule of inference, we named this pattern RE.

Let a,p be terms, and let T be a well-formed formula of the theory, Let

line 1 of a derivation contain the formula 9, and let line 2 have a formula

of the form am3. Then the replace equals rule (RE) says that if there is an

occurrence of a in cp then * (a new line of the derivation) is obtainable from

T by replacing the occurrence of a by p.

For example, if the derivation has lines

(1) C + (0 + A) = A + C

(2) 0+A=A+ 0
then, by the RE rule, where a = 0+A, replacing a by p = A+0 generates the

new line: C + (A + 0) = A + C.

Suppose there is more than one occurrence of a in T. L n = the number

of surth occurrences and 1 < k < n. The kth occurrence of a in cp is determined-
by scanning cp from left to right searching for exact pattern matches with a,

and counting until the kth such pattern match is found. Then the gereral RE

42 49

PROVE A X(X = X)

:=UEN1XS
UK

UK

(1)

Is1.1C11 (2) CY . X)->(Y X)

(S) A 'MY . X) -.(Y . X))

1*3[16$ (4) X

:*4UU:X1 Cb) A X(X X)

COhHEC1...
NAML: *LT!.

Fig. 11. Reflexivity of identity.

A XCA Y(CX Y) ->CY X)))

OK

:*GEN:Y$
OK

:44.1$
::*Yt (1) Y = Y

1.11=27
::*X:Y$ (P) A X(CX = Y) -.CY . X))

:=2USS
X::*X/ (3) CX = Y)->CY X)

:*300:Y$ (4) A YC(X Y) -.(Y . X))

:,04UG:X$ Cb) A XCA YC(X = Y) ->CY X)).

COhhEC1...
NAME: *CE2

Uig. 12. Law of symmetry for identity.

PHUvE A XCA YCA 7CC(X = Y) &CY = ()) ->cX = y))))

:=GEN:XS
OK

:=GEN:YS
OK

l*GENIZS
UK

:*WPS (1) *(X.Y) & (Y=.7)9

:,01HCS (R) Y 7

(3) X . Y

CIO A X((X Y) 7.))

:*41,S$
Xi:*Xi (5) CX = Y)->CX = 7)

1*5.3AAS (6) X =

1*1.6C-$ (7) ((X Y) ifY = 1))->(7 7)

:0.700:1$ CA) A UC(X Y) &CY 731 ->CX = 7))

:*4U0:Y4 (9) A YCA 7CCCX = Y) ACY = 7)3 -.CX = 7)))

:*900:XS (10) A XCA YCA 7CCCX = Y) RCY = 7)) -.CX 7))))

CUHHECI
NAME: *1h4

Fig. 13. Law of transitivity for identity.

13 50

PROVE A XcA YC(X y) -.(N X IFF N Y)))

u0GEN:XS
OK

:SOEN:YS
OK

NIPS (I)

t.VPS (2) .NCX)S

:.2IDCIS
sPYXS (3) A y(tY X) -. N y) .

:03855
YsoYS (4) (Y X)-. N y

.ICEIS (5) Y . X

.4.5AAS (6) N Y

1.2.6CPS (7) N X-. N Y

(8) N(Y)S

o8IDCIS
.X:YS (9) A X(CX Y) -* N X)

ig.)9CCS

X::.XS (IO) (X N X

.10.IAAS (II) N X

.8.11CPS (I2) N Y-. N X

.7.12FCS (13) (N X N Y)S(N Y N X)

.13LBS (14) N XIFF N Y

.I.14CPS (15) .(X Y)->(N X IFF N Y)

0151.03YS (16) A YC(X Y) -.(N X IFF N Y))

.1680:XS (17) A XCA Yt(X Y) -.(N X IFF N Y)))

CCRRECT...
NAME: *LEDINIZS

DERIVE A ZCA 'CUL y) -.(F z r Y)))

r*GENsZS
OK

M3EN:YS
OK

MIIPS . (I)

trTHAS A X(X . X)
lte:WCZ)S (B)

SoP5oLEIONIZS
oesN:CF(z).F(A))5
tesS

(3)

F 1. F Z

A X(A Y((X Y) -.(R X IFF N Y)))

A X(A YttX Y) Z r X) IFF(F Z
F Y))))

t3U5S
Xs:*ZS (4) A Yt(Z Y) Z F Z) IFF(F Z F

Y)))

14.1USS
To osYS (5 CZ Y)-.C(F Z F Z) IFF(F Z F Y))

1.15.18A5 (6) Cr Z r nIFF(F Z F r)

.6LBS (7) ((F z F z) -.CF z F Ir»,e((F Z F
Y) -.(F Z F Z))

FILCS (8) (ir z F Z)-.(F z F Y)

08.28AS (4) r Z. F Y

.I.9CPS (10) (Z Y)-.(F Z F Y)

.VO:YS (II) A YC(Z Y) -.(F Z r Y))

.t.88:15 (IE) A ZCA F(IL y) Z F Y)))

CORRECT...

Fig. 14. Euclid's Postulate. We firbt prove Leibnizl:
Indiscernability of Identicals and give it the
name LEIBNIZ. A form of LEIBNIZ can be taken as
definitive of identity within second-order logic.
The second derivation is a proof of Euclid's
Postulate. THA is th- reflexitivity of the identity.
Note the use of the PS procedure.

rule says that * is obtainable from T by replacing the kth occurrence of a in

T by p.

The format for the RE rule is

<line a> . <line b> RE <occurrence reference>

In other words, <line b>must refer to a line on which there is an identity

formula, and <line a>must have at least k occurrences of the left-hand side

of this identity formula. Then the kth occurrence, K can be replaced by the

right-hand side of the identity only if (a) FREE[a T K] = T; and (b) FRIKED PSVAR

[a T] = T. This, of course, amounts to PSVAR[p a <line a>].

In the first example, <Occurrence reference> = 1. The command is 1.2RE1.

As another example, let the two lines of a derivation be:

(2) A + (B +C) = (A + (B + C)) + 0

(4) A + (B +C) = 6.

Then, 2.4RE2 generates the new line: (5) A+ (B +C) = 6+o. If the command

had been 2.4RE3 (if <Occurrence reference> >2), then the rule would not apply

and an error message would be typed.

Replace Equivalents Rule (RQ). The replace equivalents rule, RQ, the

second of the interchange rules, is similar to RE. Let line 1 of s derivation

contain the formula *, and let line 2 have the formula of the form T Ine

The RQ rule may be described as follows: if there is an occurrence of T in if,

then *' (a new line) may be inferred from * by replacing the occurrence of T

by TI. Furthermore, like RE, the RQ rule must consider which occurrence of T

to replace. The format for the RQ rules is:

<line a> . <line b> EQ <Occurrence reference>

For example,

1.2RQ2

(1) (90X F X & G Y) -÷ VX F X

(2) (VX F X) IFF (VY F Y)

(3) (VX F X & G Y) VY F Y

The second line referenced must contain a material bi-conditional, otherwise

an error message is printed.

4, Generalized Interchange Rules

The interpreter accepts special commands as shortcuts for using an axiom

or theorem if that axiom or theorem is of the form a=f3 or cp 'FT *. The

interpretation is based on the RE and RQ rules. The format for all such short

52
11-5

forms is:

<line number> <name of axiom or established theorem> <bccurrence reference>

Suppose a derivation in elementary algebra contains the line:

(1) A+ B = A +((-C)+ (B+C))

Frequently in proof constructions requiring pattern manipulations, the student

may want to alter a term or a formula contained in a line of the derivation.

In the example above, he may want to replace the occurrence of the term

(-C) + (B+C) with the term (B+C) + (-C). This requires an appLication of the

CA axiom: A+ B =B +A, followed by the RE rule. The steps of the derivation

would be:

CA A+B=B+A
A: :-C

B::B+C (2) (-C) +(B +C) = (B +c) + (-0)

1.2RE1 (3) A+ B = A+ ((B+C)+ (-C))

The shortcut method for obtaining the formula on line 3 is to use the

command: 1CA3. Since the command name is an axiom of established theorem, and

since the formula associated with the name is either an identity or a material

biconditional, the program automatically carries out the two-step procedure

shown above. Note that the program, not the user, determines the substitution

sequence for obtaining the proper instantiation of the axiom CA.

To illustrate the procedure further, and especially to show why the

occurrence reference is 3, consider. again line (1) above. There are four

different possible applications of the CA axiom, i.e., instances of the left-

hand side of the pattern for CA. Scanning left to right, they are

1. A+B = B+A

2. A +((-C)+ (B +C)) =

3. (-C)+ (B+C) = (B+C)+(-C)

4. B+C = C+B

Since line 2 of the example corresponds to application 3, the occurrence number

must be 3.

In summary, this shortcut use of axioms and theorems is always permitted

if the formula associated with the axiom or theorem is of the form a = p or

In using the shortcut, the student must, of course, determine the

correct occurrence reference.

46 53

5. Derived Rules of Inference

Method.s have been provid.ed. for specifying the formal system. Axioms

when specified., and lemmas and. theorems when proved., are automatically entered.

into the command. language with instantiatior procedures and. with shortcut

applications (as explained in Section 4). An even more flexible framework

is achieved by providing a means for deriving new rules of inferencethe

so-called. "derived. rules."

To every theorem of logic there is a correspond.ing derived. rule which is

indispensible from the standpoint of decreasing the number of steps necessary

for a proof or derivation. The use of a derived rule is effectively an

iteration of proper substitution, application of the rules to form a conjunction

(FC) and. affirm the antecedent (AA). The instructional program contains two

algorithits for deriving new rules: one for theorems of the form cp-411r, and. the

other for theorems and axioms of the form a= 13 and. cp IFF

The second kind of derived rule is merely a commuted form of the shortcut

coinnands we presented in Section 4. Here, instead of replacing an instance

of a y p (or cp by *), the program searches for the proper occurrence of p

(or) and replaces it with the corresponding instance of a (or (p) . As an

example, take the associate axiom AS for an additive group; (A +B)+ C = A + (B+C).

The shortform is usually called AR (associate right). A new rule, AL (associate

left) is obtaj.ned by requesting a derived rule of inference based on AS.

Associating left means to replace the instance of the schema (-1-%A%(+% %0))

by the corresponaing instance of (+ (+ %A% %B%)%C%). Observe the derivation:

DERIVE 4 + (3 +2) = (4. + 2) + 3

AS (A+B) +C = A +(B+C)

A.:4

B: :3

C: :2 (1) (4 +3)+2 = 4 + (3 +2)

1AR1 (2) + (3 +2) = 4 + (3 + 2)

2CA4 (3) 4 + (3 +2) = 4 + (2 +3)

3AI2 (4) 1. + (3 + 2") = (4 + 2) + 3

54 47

To process the rule, the program computes the information

PREMISE U.+ %A%(%B% %C%)))

CONCL (+ (+ %A% %B%) %c%)

NOP 1

OCCUR 1

These attribute-value pairs are stored on the property list of AL.

In the first type of derived rule, the pattern of the theorem is transformed

into a conditional statement P such that the consequent is not a conditional.

Then the premises, i.e., the patterns of the conjunes of the antecedent of P,

are patterns for the lines which the rule must refefence. The number of line

references is the number of conjuncts. The result of using the rule of

inference is the proper instance of the pattern of the consequent of P. The

algorithm for obtaining P is as follows.

Let the theorem be of the form 5T where 5 is a string of universal

quantifiers with their variables, namely, of the form Val,...,Van where each

is an individual variable; T is a conditional statement. Then

a rule is derived from the (c1,7--lure of the) theorem by the following algorithm:

1. TI is obtained from T by iterated proper substitution of

a.by%Ci.%in T, for i=1,...,n.

2. (PAI is obtained from TA by replacing each occurrence of a

predicate letter by its dummy. By this replacement process,

the predicates are recognizable as substitutable elements of

the expression.

3. V/ is now a pattern for the theorem. Any symbols not

replaced by dummies are constants that must appear in the

lines referenced in the rule command.

4. CR" is in the form A-4*, where * itself may be a conditional.

In order to compute attribute-value pairs used in processing

the rule, TAF must be in the form of a conditional whose

consequent is not a conditional statement.

By repeated application of the Deduction Theorem (Mendelson,

1964, p. 61), if F. n -4(g-48) then 1.(n (pm is

transformed into the desired form, ci-4p, where p is not a

conditional.

48

5. Let N denote the name of the new rule. Then p is placed

on the property list of N under the attribute name CONCL.

6. The list of premises is formed from the con:uncts of the

antecedent a. The premises are placed on N's property

list under the attribute PREMISE. Each element of the

list is a patte= which, in processing the rule, will be

matched with a line in the derivation ("Matched" in the

sense of determining how to instantlatP the pattern in

order to obtain the line.)

7. NOP is the number of conjuncts (or the length) of the

PREMISE list. It is, specifically, the number of

reference lines which will be expected in the command.

The command format is:

<sequence of NOP line nuri;oers> <rule name>

Each line number refers to a line of the derivation tht must match a

corresponding pattern on the PREMISE list. There are, of course, NOP of these

("match" here means "is an instance of"). The sequence of line references

must be ordered with respect to the order of the elements on the PREMISE list.

In slmmary, the theorem is transformed into a conditional statement such

that thk_ consequent is not a conditional. Then three attributes are placed on

the property list associated with the rule name:

PREMISE <list of the conjuncts of the antecedent

in their dummy PATTERN notation>

NOP <the number of conjuncts>

CONCL <the consequent in its dummy PATTERN notation>

Two examples are offered in order to illus'rate the derived rule procedure.

NAME; FC

Form a conjunction is a rule of logic that lets us combine two lines of a

derivation or proof into a conjunction. Given the formulas P and q, we can

infer the expression (P&Q). The theorem is P -4 ;Q -4 (13 & q)). The first premise

is P. The consequent of thig theorem, a conditional statement, is replaced by

its consequent P& q ancl 0 'becomes the second premise of the derived rule

pattern. Now the conseqnt is not a conditional and is stored as the conclusion

(CONCL). On the 'property list of FC, where *14 and %Q.% are dummy names for the

r" rl
49

formulas P and 41, respectively, we store:

PREMISE (%P% %Q%)

NOP 2

CONCL (& %P% %Q%)

Now, if a derivation has lines

(1) A =B

(2) A +B=C

then the command 1.2FC generates the line (A. =B) & (A + C) . The command has

the correct number of line references and nf7 occurrence numbers, which is

characteristic of all rules of this nature. The new line is obtained by

forming a conjunction with the lines 1, 2 as the conjuncts.

The second example is the rule AA which, as was mentioned earlier, is

processed the same as the derived rule of inference although it is a primitive

/tile in the system. The theorem is ((P --4R)&P) R. By the above algorithm,

the computed attributes are:

PREMISE ((-4P% %R%) %P%)

NOP 2

CONCL

Commands that call for the application of a rule of inference are executed

by a matching process that attempts to determine whether each line referenced in

the command is an instance of a coxresponding dummy pattern on the PREMISE list.

For each line referenced, a routine initially receives the formula on that line,

the corresponding dummy pattern from the PREMISE list, and the message (LINE

<line number%). By recursive calls, with the elements of each expression aS

arguments,i.e., the lists or atoms within the expression lists (Ti,vi), the

routine builds a message that is the name of the location of the Ti in the initial

formula. The routine examines the atomic element (variable or predicate),or

the first element (main connective of a term or a formula) of the list if it is

nonatomic,.inorder to form a sequence of substitutions by which the referenced

lines of the u.Drivation may be obtained from the premises. Once this sequence

is computed, the corresponding instance of the conclusion pattern (CONCL) is

generated as a new line of the derivation.

For example, if the derivation contains lines:

50

(1) A=B>B=C
(2) A=B
(3) B=A

and the user types

1.2AA

then the interr r will call on the checking or matching routine with the first

premise in the PREMISE list associated with AA and the formula on the first line

referenced. Below is a trace of this procedure:

1. T: (-4%P% %RP V: (-4 (=A B)(= B C)) M: (LINE 1)

At this point, the main connective of T, the pattern of the

first premise, is the same as "V, the line of the derivation.

M describes V.

2. Tl: %P% Vl: (=A B) Ml: (ANTECEDENT OF
1)

%P% is paired with (= A B) and Ml.
LINE

3. T2: 0% V2: (= B C) M2: (CONSEQUENT OF
LINE 2)

0% is paired with (=B C) and the message M2.

Saving the above two pairs, the program continues the process with

the second premise and references the formula on the second line.

4. T3: %P% V3: (= A B) M3: (LINE 2)

0% was already paired with (= A B) which is identical with V3, so no

inconsistent pairing has been located. There are no more line references. By

substituting into the value of CONCL with respect to the substitution pairs

determined in 1-4, bhe new line: (B=C) is generated.

The command 1.3AA is processed as above except, in 3, V3 is (=B A).

Since this is not identical with the Talue already paired with 0%, an error

message is formed from M1 and M3:

LINE 2 MUST BE THE ANTECEDENT OF LINE 1.

The derivation in Figure 15 demonstrates other message types. The teaching

sequence that we can provide for all derived rules of inference, using the same

matching routine traced above, show explicitly how messages are recursively

computed.

Insert Figure 15 about here

5g

D
E
R
I
V
E

0

I
*
A
A
E
S
T
H
E

M
A
I
N

C
O
N
N
E
C
T
I
V
E

O
F

L
I
N
E

2

M
U
S
7
'

B
E

O
N
E

O
F
:

r

I
*
I
L
B
S

l
e
P
S

(
I
)

*
P

A

O
S

R
U
L
E

L
B

H
A
S

2

F
O
R
M
S
.

N
O
N
E

W
E
R
E

S
A
T
I
S
F
I
E
D

B
E
C
A
U
S
E

E
I
T
H
E
R
:

s
*
P
S

(
2
)

*
R

L
E
F
T

C
O
N
J
U
N
C
T

O
F

L
I
N
E

I

M
U
S
T

B
E

A

C
O
N
D
I
T
I
O
N
A
L

O
R

L
I
N
E

I

M
U
S
T

B
E

A

B
I
C
O
Y
L

'
)
N
A
L
.

I
*
P
S

(
3
)

*
0

-
>
P
$

)-
*Y

1L
B

S

l
*
P
S

(
4
)

*
A

O
t

W
I
T
H
O
U
T

7
,

Y
O
U

T
Y
P
E
D

T
H
E

C
O
R
H
E
C
I

F
O
R
M
A
T
.

:
*
I
.
2
H
S
5

M
O
R
U
S
N
S

L
I
N
E

1

M
U
S
T

n
E

A

C
O
N
D
I
T
I
O
N
A
L

Y
O
U
L
D

Y
O
U

L
I
K
E

A
N

E
X
A
M
P
L
E
?
4
,
Y
S

s
*
2
.
3
A
S
S
A
N
T
E
C
E
D
E
N
T

O
F

i
.
I
M
E

m
i
E
r

P
E

T
H
E

C
O
D
I
S
E
C
N
E
N
T

O
F

L
I
N
E

2

I
*
7
5

W
H
I
C
H

C
O
M
M
A
N
D

D
O

Y
O
U

N
E
E
D

M
E
L
P

W
I
T
H
/

*
H
S
S

H
S

R
E
Q
U
I
R
E
S

2

L
I
N
E

N
U
M
B
E
R
S
.

H
E
R
E
'
S

A
N

E
X
A
M
P
L
E
:

1
.
2

H
S

F
O
R

F
O
R
M

1

I
F

Y
O
U
R

D
E
R
I
V
A
T
I
O
N

C
O
N
T
A
I
N
S

L
I
N
E
S
:

(
S
)

S
I
F
F
R

-
T
H
E
N

A

C
O
R
R
E
C
T

C
O
M
M
A
N
D

W
O
U
L
D

B
E
:

5
L
B

A
N
D

T
H
E

N
E
W

L
I
N
E

W
I
L
L

B
E
:

C
S

-
.

>

S
)

m
U
R
E
/
*
Y
S
L
I
N
E

1

M
O
S
T

B
E

A

C
O
N
D
I
T
:
3
1
.
4
L

L
I
N
E

2

M
U
S
T

B
E

A

C
O
N
D
I
I
I
U
N
A
L

F
O
R

F
O
R
M

2

A
N
T
E
C
E
D
E
N
T

O
F

L
I
N
E

2

m
u
r
T

B
E

T
H
E

C
O
N
S
E
Q
U
E
N
T

O
F

L
I
N
E

I

T
H
E
R
E

I
S

A
N

E
X
A
M
P
L
E

O
F

'
E
U

L
B

R
U
L
E

I
N

T
R
E

L
I
N
E
S

O
F

Y
O
U
R
D
F
A
I
W
A
T
I
O
N
.

A

C
O
R
R
E
C
T

C
O
M
M
A
N
D

I
S
:

T
H
E

N
E
W

L
I
N
E

W
I
L
L

B
E

A

C
O
N
D
I
T
I
O
N
A
L

4
L
B

A
N
T
E
C
E
D
E
N
T

O
F

:
M
E

N
E
W

L
I
N
E

W
I
L
L

B
E

T
H
E

A
N
T
E
C
E
D
E
N
T

O
F

L
I
g
E

I

C
O
N
S
E
Q
U
E
N
T

O
F

T
H
E

N
E
W

L
I
N
E

W
I
L
L

B
E

T
H
E

C
O
N
S
E
O
U
E
N
T

O
F

L
I
N
E

2
T
H
E

N
E
W

L
I
N
E

W
O
U
L
D

B
E
:

0

I
F
F

P

W
O
U
L
D

Y
O
U

L
I
K
E

A
N

E
X
A
M
P
L
E
M
Y
S

I
H
E
R
E
I
S

A
N

E
X
A
M
P
L
E

O
F

T
H
E

H
S

R
U
L
E

/
N

T
H
E

L
I
N
E
S

O
F

Y
O
U
R

D
E
R
I
V
A
T
I
O
N
.

A

C
O
R
A
E
C
T

C
O
M
M
A
N
D

I
S
:

2
.
4
H
S

T
H
E

N
E
W

L
I
N
E

W
O
U
L
D

B
E
I

W
O
U
L
D

Y
O
U

L
I
K
E

A
N
O
T
H
E
R

E
X
A
M
P
L
E
7
*
Y
$

A

C
O
R
R
E
C
I

C
O
N
m
A
N
D

I
S
:

7
.
4
H
S

s
*
W
A
S

:
(
5
)

4
,
1
1
w
P
S

s
*
S
D
E
S

I
v
o
i
n Y
O
U

M
A
Y

N
O
T

D
I
V
I
D
E

B
Y

0

I
S
M
S

F
D

R
E
Q
U
I
R
E
S

I

L
I
N
E

N
U
M
B
E
R
.

H
E
R
E
'
S

A
N
.
E
X
A
M
P
L
E
s

1

F
O

I
R
E

N
E
W

L
I
N
E

W
O
U
L
D

B
E
:

0

.

0
M
O
R
E
.
7
*
Y
$

W
O
U
L
D

Y
O
U

L
I
K
E

A
N
O
T
H
E
R

E
X
A
M
P
L
E
T
*
Y
S

A

C
O
R
R
E
C
T

O
N
W
A
R
D

I
S
:

T
H
E

N
E
l
s

L
I
N
E

W
I
L
L

B
E

A

D
I
S
J
U
N
C
T
I
L
N

4
.
7
H
5

L
E
F
T

D
I
S
J
U
N
C
T

O
F

T
H
E

N
E
W

L
I
N
E

W
I
L
L

B
E

L
I
N
E

I

R
I
G
H
I

D
I
S
J
U
N
C
T

O
F

T
H
E

N
E
W

L
I
N
E

W
I
L
L

B
E

A

S
E
N
T
E
N
C
E

Y
O
U

T
Y
P
F

T
H
E

N
E
W

L
I
N
E

W
O
U
L
D

B
E
s

P

F
W
O
U
L
D

Y
O
U

L
I
K
E

A
N

E
X
A
M
P
L
E
M
N
S

I
*
2
A
E
S

C
o
r
l

0

I
S

N
U
1

A

R
U
L
E

M
R
C
S

(
6
)
.

0

C
.
D

:
*
5
D
L
L
S

s
*
I
R
C
S

'
(
5
)

'
0

C
O
R
R
E
C
T
.
.
.

F
i
g
.

1
5
.

R
e
a
c
h
i
n
g

t
h
e

c
o
m
m
a
n
d

l
a
n
g
u
a
g
e
.

Optional Attributes for Derived Rules. Several other attributes may

optionally appear on the property list of a rule. As yet, they are not entered

via the above algorithm, but rather by dix ct editing of the property list.

They are:

1. REQ and TYPE. A rule may require the student to enter a

particular type of well-formed term (or formula). If a

new- rule is derived from an expression containing a free

variable (or predicate), the free variable (or predicate)

can be replaced by a well-formed term (or formula). (The

inclusion of bound predicates, of course, transcends first-

order logic.) An example is the Add Equals rule (AE), 'which

may be obtained from the onen formula:

VAVB (A=B -÷A+C = B+C).

The property list of AE contains

PREMISE ((= %A% %B%))

NOP 1

REQ T (for 'term')

TYPE ALGEBRA

CONCL (= (+ %A% REQ)(+ %B% REQ)).

2. OR. The main connective of the single premise of AE can also be

one of the inequality signs. The options, >, <, and =, are

specified by listing each premise on a PREMISE list that

begins with the atom OR. CONCL must be a list of patterns

corresponding to each optional set of premises. Whichever

set matcl,es the referenced lines generates the desired

aubatitution list. For AE the change is:

PREMISE ((OR ((= %A% %B.%)) ((< %A% %B.%))((%A% %B%)))

CONCL ((= (+ %A% REQ) (+ %B% REQ)) (< (+ %A% REQ)(+ %B% REQ))

(> (%A% REQ)(%B% REQ)))-

Observe the error message and the teaching sequence for the

LB rule in Figure 15 for a sample of how the OR option affects

the analysis routines.

60
53

3. 0%. As long as the only difference between sets of

premises is the main connective, the special character

%%% in a premise indicates the optional list of main

connectives. Then %%% is stored on the property list

as the attribute whose value is the list of main

connectives. Again, observe the handling of the AE rule

in Figure 15.

PREMISE ((%%% %A% %B%))

(= > <)

CONCL (%%% (+ %A% REQ) (+%B94; LEQ))

4. RESTRICT. This attribute is used when special restrictions

on the use of a rule must be specified. The value of

RESTRICT is an executable LISP S-expression. As an

example, take the Divide Equals rule (DE) in which the

user may not divide by zero. The property list of DE

might be:

PREMISE ((= %A% %B.%))

NOP 1

REQ

TYPE ALGEBRA

CONCL (/%A% REQ) (/%B% REQ))

RESTRICT (COND ((EQ REQ 0)(ERR (QUOTE "YOU MAY NOT
DIVIDE BY ZERO"))))

(TT))

Note that if the main connective were changed to %%% so as

to include the inequalities RESTRICT would have to be

extended to account for negative values of REQ.

How to Specify New Rules of Inference. Derived rules of inference whose

property lists require only a list of PREMISES (no options) and a CONCL are

easily generated by the interpreter. The user, in either STUDENT or TEACHER

modes types

RULE

The program first requests

NAME: <name of the new rule>, then

FROM: <axiom or theorem from which to derive the rule>.

61

The name cannot be a reserved name, i.e., one of the procedure names or a

primitive rule of inference. It mus-, be an alphabetic string of characters

with arbitrary length greater than one. The axiom or the theorem referenced

must be a (possibly quantified) conditional statement, an identity statement,

or a bi-conditional as described above. After che derivation of the rule is

completed, the program will type 'OK'. In what follows, let 5 be a string of

universal quantifiers with the corresponding variables of generalization.

Algorithmically what takes place is the following.

1. Determine if the user is allowed to reference the axiom

or theorem. In TEACHER mode, this only requires checking

to see whether the axiom or theorem exists. In STUDEUT

mode, as defined later, it requires seeing whether the

student actually knows the axiom or the theorem.

2 Let 9 be the value of CLOSED. Is the main conmetive

of the matrix of 9 an identity or a bi-conditional

statement? If neither, go to step 4.

3. Commands of the form <line,<hame><occurrence> are automatically

generated for axioms and theorems with matrices of the form

a. 0 and 9 16. f. Procedure completed.

4. If the matrix of 9 is not a conditional, no /tile can

be derived. Procedure completed with an error message.

5. Otherwise, carry out the procedure outlined on page 48

for deriving rules of inference.

Figur,: 16 is the second in the series of dialogues that began with Figure 3.

Here, the teacher adds the axioms, two theorems, and some of the rules to be

used in constructing derivations of expressions of elementary algebra. Figure 17

lists the properties of these newly specified axioms and theorems. It ends with

two derivations for the same formula, one using the specified theorem and one

using the rule derived from that theorem. A complete list of derived rules of

inference for the sentential calculus is given in Appendix II.

Insert Figures 16 and 17 about here

.(STA117)
WHO ARE YOU (TYPE S OR T)?
*TS
PLEASE TYPE YOUR NUMBER:

DO YOU WAN). 10 CREATE OR ALIER A THEORYT(TYFE C OR A)

SAS
THEORY NAME?
*EMS

HI...
IN SETTING UP A FIRST.ORVER THEORY YOU MUST SPECIFY
THE VOCABULARY AND THE AXIOMS. THEN YUU CAN CHOOSV
A SET OF WELLFORMED FORMUUAS AS THEOREMS. AND DERIVE
NEW RULES OF INFERENCE FROM THESE THEORNKS. IHE

COMMANDS AREt VOCAP. RATON. THEO/U(. AHD RULE. TYPE

FIN WHEN YOU ARE THROUEH.

ttsAXIOMS
NAME: .FAXAS
L.FFI ./B(X.Y.X))...(X.Y).S

t*AAA>XIOMS
NAHES .AXPS
WPF: SE(X.Y.Z)

S.:AXIOMS
NAME) stAXCE
WFF: .:(FI(X,Y,W) S P(Y.Z.U)) PIX,YoZ)S

SS/V(10MS
NAMES *AXD$
WFFs .1hCX.Y.E) Oh B(Y,Z.X)) UR RCZ.X.YIT

t.AXIOMS
NAMEs WAXES
WFF: *MHO) (Y.7.)) S BCX.Y.)1 A P(YpoW))

t.IHEOHEMS
THEOREM ROMPER: sit
WFFS SFIX.YY..t;Y..7) ((P(Y,F..)). (F.Y))5

t.RULES
NAMEt *SP?
Fh0Mt *IBIS

PCX.X.U/S

Fig. 1 . Specifying axioms.

63

(
P
H
O
P
E
R
T
Y
L
I
S
T

A
X
A
)

V
A
L

(
E
(
X
,
Y
,
X
)
)
-
w
(
X

Y
)

C
L
O
S
E
D

C
A

X
(
A

Y
(
.
,
.
(
1
3

2
X
2

2
Y
Z

2
7
(
2
)
(
.

2
X
2

2
1
(
2
)
)
)
)

P
A
T
T
E
R
N

(
.
.
s
(
1
7
.
2
)
(
2

2
1
(
2

2
)
(
2
)
(
w

2
7
(
2

t
Y
S
)
)

R
E
Q
U
E
S
T

X

Y

T
Y
P
E

P
O
I
N
T

P
O
I
N
T

7 1
P
(
P
R
O
P
E
R
T
Y
L
I
S
T

A
X
E
S
)

V
A
L

1
4
(
X
,
Y
,
Z
)
.
.
>

B
(
L
.
Y
.
X
)

C
L
O
S
E
D
,

(
A

X
(
A

Y
(
A

Z
(
-
,
(
1
3

2
X
2

t
Y
2

t
Z
t
)
(
1
i

%
Z
2

s
y
s

p
c
s
)
)
)
)
)

P
A
T
T
E
R
N

(
-
v
(
B

2
7
(
2

2
Y
2

2
Z
2
)
(
D

2
Z
2

2
1
(
2

2
X
2
)
)

R
E
Q
U
E
S
T

X

Y

Z

T
Y
P
E

P
O
I
N
T

W
I
N
T

P
O
I
N
T

t
(
P
R
O
P
E
R
T
Y
L
I
S
T

A
X
C
)

V
A
L

(
B
(
X
Y
W
)
4
1

B
(
Y
.
Z
4
)
)
-
*

E
(
X
.
Y
,
Z
)

C
L
O
S
E
D

(
A

X
(
A

Y
(
A

W
(
A

s
y
s

2
6
1
1
)
0
3

2
Y
2

2
Z
2

1
.
1
(
2
)
)
(
P

T
X
%

Z
Y
2

2
Z
2
)
)
)
)
)
)

C
T
?

P
A
T
T
E
R
N

(
.
.
0
.
(
8
.
(
1
3

2
X
2

2
Y
2

2
1
(
2
)
(
1
4

2
Y
2

2
7

2
3
W
2
)
)
(
3

2
X
2

2
Y
2

2
Z
2
)
)

R
E
Q
U
E
S
T

W
X
Y
Z

T
Y
P
E

P
O
I
N
T

P
O
I
N
T

P
O
I
N
T

P
O
I
N
T

i
p
(
P
R
O
B
L
E
M
)

T
Y
P
E

A

D
E
R
I
V
E
,

P
R
O
V
E

O
R

R
U
L
E

C
O
M
M
A
N
D

(
*
D
E
R
I
V
E
:

Y
.
Z
2

D
E
R
I
V
E

Y
Z

i
*
P
2

(
I
)

*
S
(
Y
,
Z
,
X
)
S
,

c
*
P
S

(
2
)

*
1
1
(
8
0
1
*
Z
.
Y
.
X
)
S

(
*
T
H
I
S

B
(
X
.
Y
,
Z
)
.
.
w
(
(
B
(
Y
,
X
,
Z
)
)
7
v
(
X

Y
)
)

X
t
t
s
Y
i

y
i
w
s

Z
u
c
c
a

(
3
)

B
(
Y
.
Z
.
X
7
.
w
(
D
(
7
.
.
Y
.
X
)

7
1
)

1
1
.
3
.
(
A
A
S

(
4
)

B
(
Z
.
Y
,
X
)
-
a
(
Y

Z
)

1
4
4
.
2
A
A
S

(
5
)

Y
Z

C
O
R
R
E
C
T
.
.
.

T
Y
P
E

A

D
E
R
I
V
E
.

P
R
O
V
E

O
H

R
U
L
E

C
O
M
M
A
N
D

S
(
P
R
U
P
E
R
T
Y
L
I
S
T

A
X
D
)

(
*
D
E
R
I
V
E
:

Y
.
Z
$

D
E
R
I
V
E

Y
Z

V
A
L

(
H
(
X
9
Y
,
Z
)
O
R

B
(
Y
.
Z
,
X
)
/
O
R

E
I
(
Z
,
X
,
Y
)

C
L
O
S
E
D

C
A

X
(
A

Y
(
A

Z
(
O
R
(
0
1
1
(
3

%
X
%

2
Y
Z

2
Z
2
7
(
1
3

2
Y
2

2
Z
2

2
X
2
)
)
(
B

2
Z
2

2
Y
2
)
)
)
)
)

(
.
1
P
5

(
I
)

*
E
R
Y
.
Z
.
,
X
)
0
X
,
W
X
)
5

'
P
A
T
T
E
R
N

:
O
H
(
O
R
(
P

2
X
2

2
7
2
/
(
1
1

2
1
2

Z
Z
2

2
X
2
)
)
(
B

7
7
2

2
X
2
.

2
Y
2
)
)

R
E
Q
U
E
S
T

X

Y

Z

:
S
P
%

(
2
)

4
B
(
Z
.
Y
.
X
)
%

.
1
Y
P
E

P
O
I
N
T

P
O
I
N
T

P
O
I
N
T

1
4
-
1
.
2
5
P
t

(
3
)

Y
Z

.
T (
P
R
O
P
E
R
T
Y
L
I
S
T

A
X
E
)

C
O
R
R
E
C
T
.
.
.

V
A
L

(
(
(
N
O
l
(
y

Z
)
)
A
,

E
(
X
,
Y
.
2
)
)
8
,

E
(
Y
.
Z
.
W
)
)
.
.
.
v

B
(
X
p
Z
.
W
)

T
Y
P
E

A

D
E
R
I
V
E
.
,

p
n
o
t
a

O
R

R
U
L
E
C
O
M
M
A
N
D

C
L
O
S
E
D

(
A

Y
(
A

Z
f
A

X
(
A

V
(
.
.
y
(
8
(
A
(
N
O
T
(
.

2
Y
2

2
Z
2
)
)
(
E

X
X
2

2
Y
2

t
s
s
)
)
(
1
3

2
1
(
2

U
2
'
2
1
(
2
)
/
(
B

2
X
2

2
Z
2

S
W
)
M
)
)

P
A
T
T
E
R
N

(
.
.
.
>
(
%
(
&
(
N
0
1
(
=

2
1
(
2

2
7
.
2
)
)
(
B

T
X
%

2
Y
i
.
U
2
)
)
(
B

'
o
r
s

u
s

I
S
X
)
)
.
(
E
i

(
*
F
I
N
S

2
X
2

T
Z
T

T
U
T
)
)

H
h
O
U
E
S
1

6
X
Y
Z

1
Y
P
)
.

P
O
I
N
T

P
O
I
N
1

Y
O
I
N
T

P
O
I
N
1

1 *
(
P
H
O
P
L
N
I
T
L
I
S
1

I
H
I
)

V
A
L

(
.
Y
.
Z
)
*
(
(
E
(
Y
X
Z
)
)
-
.
(
X

Y
)
)

C
L
O
S
L
U

C
,

X
(
A

Y
(
A

Z
(
.
.
.
(
1
3

%
X
I

7
1
,
1

7
Z
T
;
(
1
.
*
(
E
T
Y
%

2
X
%

T
Z
T
)
(
.

T
X
%

s
y
i

)
»
»

P
A
T
T
E
R
N

(
v
(
B

2
X
2

7
Y
7

7
Z
7
)
(
-
>
(
B

T
Y
%

I
X
%

%
M
(
.

%
X
%

7
1
.
7
)
)
)

P
L
.
O
U
L
S
T

X

Y

Z

T
Y
P
E

P
O
I
N
T

P
O
I
N
T

P
0
1
0
1

*
(
P
P
O
1
S
1
1
1
Y
L
I
S
T

S
)
)

1
-
H
L
2
I
S
E

(
L
I

%
X
X

1
Y
%

7
4
%
)
(
8

N
u
P

C
u
N
C
L

c
.

2
X
2

Z
Y
2
/

F
i
g
.

1
7
.

P
r
o
p
e
r
t
y

l
i
s
t
s

f
o
r
a
x
i
o
m
s

i
n
'
F
i
g
,

1
6

a
n
d

e
x
a
m
p
l
e
a
e
r
i
v
a
t
i
o
n
s
.

6. Miscellaneous Commands

Five mneumonics are reserved as special commands of the command language.

Each will be mentioned, although not alwa7s elaborated on. The description of

the instructional program will be compie-ei with a section on defining problems.

Enter a Line (ENT). This rule shouLd usually not be available to a student.

Like WP, ENT expects the user to type a well-formed formula. Unlike WP, nothing

is being asserted. No proof procedure is beginning sc, no procedure must be

closed. If the line typed is the problem expression itself, then the program

thinks the problia is solved.

While the ENT rule may be used to type in expressions to determine whether

they are well formed, it usually is used to debug the curriculum without

constructing an entire proof, or to quickly finish a problem that has given the

user too much trouble. By requesting this problem at another time, he can

retry it when he feels better prepared to do so. At line n., the format is

ENT (n.) <well-formed formula>

Delete the Last Line (DLL). The user conceivably could request a working

premise or a GEN to indicate the beginning of a derivation procedure and then

could decide, any number of lines later, that the strategy he chose was

incorrect, By the rules of construction, however, he either must close off

the procedure or delete the command that denoted tl:e beginning. The delete-the-

last-line rule (DLL) lets the user delete the last line from consideration.

Another use for DLL is to delete a sequence of irrelevant lines that are only

confusing the user's perception of the problem.

DLL alone permits the deletion of the last line of the der.vation or proof.

If the last line is a working premise, then the line is removed as a conditional

premise. If a GEN request occurs after the last line, then that request is

eliminated.

The format is <line number> DLL-

The DLL rule lets the user delete more than one line at a time. All the lines

of the derivation or proof, beginning with <line number>, are deleted. If the

derivation already has n lines and the command given is j DLL where j < n,

then the lines j,j+1,...,n are deleted. The derivation under consideration is

now j-1 lines long. The only rescriction on this rule is that no premise

entered as part of the statement of the problem can be deleted.

58 65

INIT. The IN1 .ommand, if permitted by the curriculum writer for the DERIVE

or PFOVE proble.- be*ag presented, defers solution of the problem until the

student decides he is ready to continue. By typing INIT, the student announces

his desire for the initiative to request his awn DERIVE or PROVE problems, or

to derive a new RULE of inference (see page YO on defining problems).

When the student types the usual terminating command, FIN, the system

returns to the problem originally interrupted. The problem is presented anew.

If the student, while he had the initiative, specified lemmas or rules, he could

now use them to solve his current and future problems. Appendix IV, problem

5, contains an example of the INIT command.

7. Inferfacing Mechanical Theorem Provers to the Instructional System

SHOW. The instructional system under discussion was designed primarily

for teaching the construction of derivations and proofs. The system's command

language leaves most of the typing of newly generated lines to the computer

and relieves some of the tediousnes n the student's work. Supposedly, this

only leaves him with the task of ::hinking out the stages of the proof. But

trivia is also tedious. No mathematician, when constructing a complex proof,

relishes trifling with the laws of commutativity, or simple term eliminations,

i.e., obtaining those results normally introduced by 'obviously or 'clearly'

in mathematical discourse. As students of mathematics are introduced to more

intricate problems, they too tend to produce less rigorous proofs, yet ones

clearly valid to the trained eye. We would like to emulate this behavior--to

provide some mechanism by which a student can say to the computer "This line is

obviously a valid inference from the work which I have already done, a-).7. from

instances of such and such axioms and theorems."

We simulate the ability of the 'trained eye' by giving the stude.ft access

to a SHOW command by which he communicates with a mechanical theorem-prover.

The theorem-prover decides whether a new desired line is in fact a trIvial

deJuction from the set of formulas cited. Before revealing how the simulation

was carried out and whether our initial results seem promising, we offer an

illustration.

In the proof in Figure 18, B is a three-place predicate denoting "betweenness,"

Insert Figure 13 about here

66
59

PROVE (((POT Y Z)6 8(X.Y,Z))8, 8(Y.Z.W))..* BfX.Z.N)

It*WP (I) ((NOT Y Z)St 8(1.7))6 8(YoZaN)

VOIRC (8) B(Y.Z.V)

i*AXB 13(X.Y.Z).3.8(2.Y,X)
Xs
TI
ZW08 C31 B(YsZ.11).> El(WAPE.Y)

14.3.2A4 (A) B(W.Z,Y)

i*SHCV (S) ((NOT Z.Y).1 e(w,z,Y))i Et(Z.F.X)
FROM LINES OF THE DERIVATION?
114.1.4
WICK AXIOMS OR THEOREMS?
tt*AX8. B(ZoYeZ) B(Z.Y..X1

Xts*X
Yti*Y
ZESSZ
ti
OK? .1,1'
LINE S IS CM

t*AXE (((N017 Y B(?...Y.Z))6 B(Y.Z.V)).4. SCX,..Y.8)

Vit*X
xsesii
TOW,
ZSE*Y (6) (((NOT Z Y)F, 13(8,Z0Y))6 BCZ.T.X))..* 13(WAZ.X)

246.5AA (?) 8(8.Z,X)

t*AAR BCX.Y.Z)..s 13(E.Y.X)
XISSW
irti*E
nierf (8) Isma,x). lux,z,w)

s

14.8.784 (V). B(X.Z.8)

s*1.8CP' (ID) (((NOT Y a Z)A 8(XsYsZ))6 8(X.Z.N)

CORRECT...

Fig. 18. A proof using the SHOW command,

where B(X,Y,Z) statt_s that point Y stands between points X and Z on the straight

line they define. The axioms were listed earlier (page 22). The problem

rendered below was given to a number of collLge students. Those who solved it

came up with proofs ranging somewhere between 40 and 70 lines. One student

discovered a 17-line solution that was shortened to 10 by using a SHOW command

to skip trivial sequences and commands for forming and separating conjunctions.

The student makes the claim that line 5 is a trivial deduction from lines

1 and 4, and from a particular instance of axiom AXB. The theorem-prover

decides the claim is justified, and the new line is accepted. The fact that

the formula on line 5 might not be proved by the theorem-prover does not

necessarily imply that it is not derivable. It only suggests that the formula

does not answer our criterion for triViality. Note that the student, not the

theorem-prover, is required to specify the proper substitution sequence for the

axiom. Contrary to the usuaL aims of development and use of mechanical theorem-

provers, the prover does not have to perform complex analyses. That is left

to the student. While the theorem-prover is used only to remove trivial

manipulations, the determination of proper instantiation often is not trivial.

For the SHOW routine, the instructional system was connected to a theorem-

prover based upon the Resolution Prineiple [Robinson, 1965 and J. Allen & D.

Luckman, 1970], a refutation scheme by which a statement is proved true by

showing that the conjuction of its negation with all known true statements

in the logical system at hand is inconsistent. Successful interface of the

prover with the instructional system requires computation of tl-!e set of clauses

on which the theorem-prover performs its resolutions. In order to cornute these

clauses, the program must form the Skolem transformation of each line of the

derivation and of each instance of an axiom or theorem which the student claims

should be considered by the prover in its deduction process. Computation of the

Skolem transformation requires obtaining the prenex normal form of the formula

by a routine that is also used in determining the closure for a formula.

(Appendix I contains an algorithm for computing the Skolem transformation of a

formula.) The set of clauses for the above problem is exhibited in Figure 19

as axioms 1-5, the negation of the problem statement as axiom 6, and the solution

is given as the tree of resolvants.

Insert Figure 19 about here

61

Axioms

1. -1E(Y, Z)

2. B(X,Y,Z)

3. B(Y,Z,W)

4. B(W, Z, Y)

5. nB(X,Y,Z) B(Z,Y,X)

6. E(Z,Y) -,B(W,Z,Y) -1B(Z,Y,X)

Resolution Tree

5

,B(W, Z, Y) -03(Z, Y, X B(Z,Y,X)

1B(Z,Y,X

NIL

Fig. 19. Proof based on the Resolution PrinciDle.

62

69

Although theoretically one might expect this approach to the SHOW command

to work, numerous difficulties were encountered in experimental endeavors.

Some difficulties are apparently due to the interactive nature of the theorem-

prover used and to the strategies required to improve the efficiency of the

search for a proof fLuckham, 19701. For the most part, published results seem

to indicate a high dependency on the part o2 the program for human intervention

in order to add new clauses (lemmas) or to change the set of strategies. This

need for intervention, while often suitable for research, is not acceptable for

teaching purposes. The stumbling block seems to be the determination of those

settings of the search-strategies which will, in fact, permit a solution to be

found within the time and space constraints. There is no obvious way, either

from the structure of the expression, or from some interpretation of it, to

determine which strategies to use. Since the student should not be required

to interact with the theorem-prover, one set of strategies anticipating the

kinds of problems the students will think of must be used for a given group of

problems. The problem given in Figure 18 was not solvable by the theorem-prover.

Apparently the program got confused because the search-space consisted entirely

of ground clauses. Trouble also arose with theequality strategy (paramodulation)

which would not substitute a constant for a constant:* As a result, many simple

problems in group taleory were not solvable. It would seem that, to implement

a satisfactory SHOW command, the development of new strategies for resolution,

or of theorem-provers with heuristic devices more closely linked to a particular

range of problems, would fare better.

HELP. As mentioned in the introduction to this report, one of the important

analysis problems faced in an instructional system for teaching the notion of

mathematical proof is to help the student when he encounters difficulty in

completing a proof or derivation. If the computer is to simulate the human

tutor's ability to show the student how to proceed, the computer must be able

to analyze and respori to the details of the student's work. It should not

merely produce prestored answers to anticipated questions, or hints to

anticipated difficulties. If the computer is to be able to adapt to the

immediate needs of each student, it must be able to extract information from

each student's responses, especially when they are only partial or erroneous,

so as to initiate a dialogue relevant to what the student has been doing.

*l'his is an error in the program made available to us, not with the paramodulation

strategy itself.

70 63

In order to sustain an informative dialogue, and thereby to realize a

mechanized tutor, a heuristic theorem-prover was written. Ideally, a theorem-

prover knows how to do the proofs the students are required to do. The

theorem-prover can find solutions to problems that have premises. If one

assumes that the lines the student has already requested are premise lines,

then the theorem-pmver can take them into account when it tries to discover a

derivation. In this manner, the computer tutor is able to deduce what the

student has already done in terms of what lines of his work can actually enter

into a complete derivation. Using the information obtained by the theorem-prover,

the computer can initiate a dialogue that will direct the student towards a

successful solution of the problem.

To test this idea, a heuristically-based theorem-prover was written that

solves problems of an Abelian group. The theorem-prover was interfaced to the

instructional system via the command HELP. Any time the student feels the

need for advice on how to continue, he types this command. The theorem-prover

then attempts to find one or more solutions that take into account lines alreaay

generated in the derivation. The informatlon so gained is given to a dialogue

routine that proceeds to tutor the student. The precise details of how the

theorem-prover operates, especially of how it is able to select several possible

solution paths, as well as a description of the dialogue itself, will be given

in a subsequent report [Goldberg].

PART IV. DEFINING PROBLEMS

The basic intent of this instructional program is to provide an interpretive

system under which a user can explore the notion of mathematical proof. The

emphasis is on selfexploration, not on the working through of a predetermined,

linearly organized set of problems. Thus, two forms of curriculum specification

are described: the syntax for problems that are stored on some peripheral

device (such as the disk), and the commands the student has available for

requesting problems at runtime. Recall that the command INIT (page 59) gives the

student the option to interrupt the prestored curriculum on which he may be

working and to switch to the second form of problem specification.

6 Li-

1. Prespecified Curriculum-TEACHER Mode

The syntax for curriculum stored on a peripheral file is given below.

There are three types of problems:

1. A question that requires as an answer, a string of

characters representing a letter, word, or number;

2. A derive problem, with a sequence of premises, for

which the user constructs a derivation; and

3. A prove problem, i.e., a derive problem with no

premises, for which the user is required to construct a

proof. . The expression so proved will have a name

associated with it. The name labels the expression as

either a theorem or a lemma. All theorem names have the

form TH<positive integer; names for lemmas are strings

of one or more alphabetic characters.

The syntax presented is not true in the sense that all possible strings

that can be generated from the grammar do not have meaning in the interpretive

system. The acceptable groupings of the commands, including those which are

optional, follow. Notice that it is necessary to enclose each problem within

matched pairs of parentheses for the convenience of the LISP input function

READ. In general, the entire problem, as wcll as any arguments to a command

element are delimited by paired parentheses. The exception is COMMENT, which

requires quotation marks to enclose the actual text to be printed. An

illustration of problems for elementary algebra is offered in Appendix III.

Appendix IV f..s the interaction of a student preSented with these problems.

In-tax for Problems on the Curriculum File.

<problem> ::= [<problem number>(<problem type> <problem statement>

<Yestrict ions> <answer>1

<p r ob lem number>

<problem type>

<problem statement>

::= a decimal number used for sequencing the problems

:= DERIVE I PROVE QUESTION Q

:= (<well-formed expression>1

PREMISE (<well-formed formula>) I P (<wff>)

COMMENT "<text of the comment or question>11 I COM

NAME (<positive integer>) I

NAME (<string of alphabetic characters>) I

72 65

<restrictions> ::= RESTRICT (<possible restrictions>)

<possfble restrictions> ::= (YES<list of code names>)<possible restrictions> 1

(N0<list of code names>)<possible restrictions> 1

(ADD<axiom or theorem name>)<possible restrictions> 1

(BLOCK)(possible restrictions) 1

<answer> ::= ANS (<string for the exact match>) 1 ANSWER (<string>)

RANGE (<lower bound> <Upper bound>) 1

ALIST (<list of possfble answers>) 1

PROOF Note: If an answer is more than one
item long, it is enclosed in
parentheses in the ALIST.

<lower bound> ::= integer nuMber 1 NIL

<Upper bound> ::= integer number 1 NIL

Acceptable Groupings of Problem Commands.

Question problems

1. [<humber> (QUESTION COMMENT "the text of the question"

ANSWER (an atomic answer]

2. Vnumber> (Q COM "the question text"

RANGE (<lower bound> <Upper bound>)

3. [<humber> (Q COM "text" ALIST (list of possible answers]

Note: Q, COM, and ANS are abbreviations for QUESTION, COMMENT, and

ANSWER, respectively. In ., the answer is a number N such

that <lower bound> < N < <upper boun?. In 3., the list of

answers is (al a2 (a2 alt.)), i.e., a list of atoms and sublists.

Derive problems

Vnumber>

(DERIVE (Well-formed formula>)

COMMENT "text of something the teacher may want to say about the problem!'

PREMISE (<Well-formed formula>)

PRZMISE (<Well-formed formula%)

RESTRICT ((YES list of rules)(NO list of rules)(ADD name of an axiom,

rule, or theorem)(BLOCK))

PROOF]

Note: COMMENT, RESTRICT, and PREMISES are optional. Any number of
premises, including none, may be included.

66 73

Prove problems

[<number>

(PROVE (well-formed formula))

NAME (<positive integer or an alphabetic string of characters>)

COM "text" RESTRICT ((YES list of rules)(NO list of rules)(BLOCK))

PROOF]

Note: If the name is a positive integer, then the name becomes

Tfl<positive integer>. After the problem is solved, the

name becomes part of the command language. NAME, COM, and

RESTRICT are optional.

The RESTRICT option gives the curriculum writer special control over the

command language. There are four possible control devices.

1. In order to add new commands (axiom names, theorems, and

rules) to a student's command language, the optional list:

(ADD <list of one or more names of axioms, rules, or theorem))

is included as one of the arguments following the word RESTRICT.

2. The writer may not want the student to interrupt the particular

problem to be presented, use the MIT command. (Perhaps

the curriculum is organized so that problems reference one

another and the writer prefers to have a group of problems

worked on in succession.) The interruption can be blocked

with the argument (BLOCK). This option must appear in the

specification of each derive or prove problem which the

student may not interrupt.

3. The curriculum writer can also take special control over thc

actual solution to the derive or prove problem. He can

insist that the student use one or more rules. These rules are

included as an argument list beginning with the -word PYES.

4. Or, he can insist that the student find a solution without

using certain commands. This is the list beginning with the

word RNO. The student is allowed to complete a solution

before the interpreter checks to see if that solution meets

the restrictions. If a command is incorrectly used, the

student will be asked to work the problem again.

"Using a command" should be carefully defined since a student can request

a command and then, without deleting it, not really have that command enter

into the generation of the problem formula. The exact protocol of commands

the student typed does not indicate if the student solved the problem within

the restrictions set by the curriculum writer. Instead, a computed list of

" relevant" commands, i.e., commands which materially entered into the generation

of the problem folmula must be examined. The algorithm for computing the list

of relevant commands is ,iven in Figure 20.

Insert Figure 20 about here

2. Commands for Requesting Problems in the STUDENT Mode

The student requests only the derive and prove problems, not the questions.

This give him a chance to rework his proof techniques, repeat problems he may

have had trouble solving, try some easier problems if he feels he is not ready

for the ones he is being given, or try more challenging ones. Any lemmas he

proves become part of his command language and are thus available to him for

later derivations. The syntax for requesting problems is compatible with the

command language.

1. To request a derive problem, the student types:

DERIVE: <Well-formed formula>

(1) <well-formed formula>

(2) <Well-formed formula>

The P comman stands f')r. "premise." It :).s similar to

entering a formula for a working premise, but this line cannot

be deleted by the DLL rule. Once the student starts typing

commands other than P, he can no longer type the P command.

68

1

n ... last line of the derivation

commandlist

ckackl 4.. first element of (COM n

Is checkl equal to (NIL)! P, or WP?

No Yes

check
check appended
to checkl

Remove the
first element
crom check

Is check empty/

Yes

-1

i 4-. first element of check

commandlist 4- add I to
commandlist

checkl 4- first element of
(COM 0

Is the first element
of check a member of
commandlist?

No

mall

No

Yes

Here, commandlist is a list of line

nuMberS. The command names at each

line are relevant to generating the

solution formula. Now search for

the command names:

commands NIL

is ccumaLdlist empty?

Yes

RETURN
commands

i ...first element of
commandlist

commandlist 4-.rest of
cotomandlist

commands 4- appenUto
commandd the
second elemunt
of (COM i)

Fig. 20. Algorithm for computing the solution string--the list

of commands used in generating the problem formula.

Notationally, the list of commands is saved in an array named (COM

where i is the line number. (COM i) has the form:

(<1ist of line numbers> (command name) <list of occurrence references>

(<information following the colon>))

i))

2. To request a prove problem, the student types:

PROVE: <Well-formed formula>

After the student completes the proof, the program

will ask hlm for a

NAME: <String of alphabetic characters>

The student's response, an alphabetic string, names

the formula as a lemma which now becomes part of his command

language.

3. The student may also derive a new rule of inference if he

feels it will help:him in constructing new derivations.

The format is:

RULE:<hame for the new rule--an alphabetic string>

FROM:<hame of an axiom or theorem in the student's
command language>

The same information has been requested here as was requested

in the TEACHER mode version of deriving a rule of inference

(page 54) and the identical processing algorithm is carried out.

PART V. SUMMARY OF THE COMMAND LANGUAGE

The convention is to underline items typed by the user; all other information

is typed by the program. Each user command is terminated by ar, ALTMODE (Enter Key)

which appears as a dollar sign ($). In most cases, the ALTMODE is not shown.

rote that the aser can type ALTMODE in order to escape from any command sequence.

In the following, a is an individual variable, p a term, and T, 4i, 10, are

well-formed formulas (WFF).

Instances of AxIoms and Established Theorems

1. Proper SubstitUtion of a Term for a Variable.

<axiom lemma or theorem name>

<Variable>:: <term of instantiation>

<variable>:: <term of instantiation>

The substitution sequence continues for each universally
a

quantified variable (whose scope is the entire formula) of the

closed formula E-ssociated with the axiom, lemma, or theorem.

Substitution is carried out simultaneously.

70 77

2. Proper Substitution for Predicate Letters and of Terms for Variables.

PS : <name of axiom, lemma, or theorem>

:: <variable> : <Well-formed -uerm>

<predicate letter> : <WIT>

The substitution sequence continues until the user types the

ALTMODE key without one of the two possible substitution pairs.

The substitution procedures are carried out iteratively.

Proof Procedures

1. WP Working Premise

WP (i) <WFF>

2. CP Conditional Proof

WP (i) 9

(j) *

i.jCP (n) 9 ---0*

3. IP

WP

Indirect Proof (reductio ad absurdum)

(i) 2

(j) *

(k) NOT *

i.j.kIp (n) NOT 9

4. Introduce a variable of universal generalization

GEN: <Variable>

OK If the variable does not occur free in any

antecedent lines, the program types tOK';

otherwise, an error message is given.

5. UG

GEN: a

OK

Universal Generalization

or, alternatively:

(i) T(0) (i) p(a)

iUG: a (n) Vacga) iuG: a (n) VaT(a)

This version of UG need This version of UG requires

only check the last GEN checking for a free in any

introduced, antecedent lines.

Primitive Rules of Inference

1. AA Affirm the Antecedent (imodus vnens)

(i) (ID

(j)

i.jAA (n) *

2. Quantification Rules (and UG above)

ES Existential Specification

(5) 3ap(a)
iES

a :: p (n) p(P) where p must be new to the derivation.

EG Existential Generalization

(i)T(P))

LEG <sequence.of occurrence numbers>

a : p (n) Elacpko0 where substitute a for each occurrence

of p referenced.

US Universal Specification

(5.) Vap(a)

iUS

a :: (n) VP)

72 9

3. Logic of Identity IDS and IDC

(1) 9(13)

iIDC <sequence of occurrence numbers>

a : p

m IDS

(m) TOO) Ilere substitute a for each

(n) 9(P) occurrence of p referenced.

4. Interchange Rules RE and RQ

(1) q(a)

(j) a=i3

i.jRE <Occurrence number>

(n) 9(P) where replace p for the free occurrence

(0) 9(0 of a referenced.

(P) *4-3V

i.jRQ <Occurrence number>

(q) 9(10) where replace * for the occurrence

of 110 referenced.

5. Generalized Interchange Rules--short forms of axioms and theorems

<line number> <Axiom, lemma, or theorem name><occurrence number>

Miscellaneous Commands

1. Delete the last line DLL

<line number> DLL

All lines other than premises, beginning with <line number>

and continuing to the last line generated, are deleted. If IP and

CP lines are deleted, the subsidiary derivation is no longer

considered closed.

2. Enter a line ENT

ENT (i) <WFF>

This command is useful for testing expressions for well-

formedness or for debugging the curriculum without having to

do the proofs.

80
73

3. Use of Mechanical Theorem-Provers SHOW and HELP

SHOW is described in Part II, Section 5.

HELP is explained in Parts III and IV.

4. Obtain the initiative to request problems at runtime.

INIT

a. Derive problems

DERIVE: <WFF>

P (1) <WFF>

P (2) <WFF>

The student can enter any number of

premise lines, continuing until he

enters a command different from P

or DLL.

b. Prove Problems

PROVE: <WFF>

NAME:: <alphabetic string>

After the proof is completed, the student may assign a

name to be associated with the WFF. This name becomes

part of the atudent's available command language.

c. Derive a new rule of Inference.

RULE: <name of a new rule>

FROM:: <axiom, lemma, or theorem name>

The new rule results from the algorithm presented in

Part III, Section 5..

Derived Rules of Inference

The general format for a derived rule of inference is:

<sequence of NOP line numbers> <name of the rule>.

The line numbers refer to lines of the derivation or'proof which must match

the corresponding premises of the rule. The premises are patterns (under

the name PATTERN) on the property list of each rule listed in Appendix II.

Note that the logical connectives are written as variable names (eig.,

"ARROW", "ORSGN"). After the teacher has specified the vocabulary., the

variables in the rules are replaced by the corresponding logical constants.

The RESTRICT options are written as LISP S-expressions. The procedure that

74- 81

processes derived rules evaluates these S-expressions in order to check

for restrictions on the values of the dummy variables or the requested

expressions (REQ), or to (re)compute substitution pairs for the substitution

list.

82
75

References

Allen, J., & Luckham, D. An Interactive Theorem-Proving Program.

In B. Meltzer & D. Michie (Eds.), Machine Intelligence 5.

New York: American Elsevier, 1970. Pp. 321-336.

Goldberg, A. Ph.D. dissertation (in preparation).

Kalish, D., & Montague, R. Lo- .c: Techniques of Formal Reasoning.

New Ybrk: Harcourt, Brace & World, 1964.

Luckham, D. Refinement Theorems in Resolution. In M. Laudet (Ed.),

Proceedings IRIA Symposium on Automatic Demonstrations.

Springer-Verlag, 1970.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., & Levin, M. I.

LISP 1.5 Programmer's Manual. Cambridge, Massachusetts: The MIT

Press, 1962.

Mendelson, E. Introduction to Mathematical Logic. Princeton, New Jersey:

D. Van Nostrand, 1964.

Robinson, J. A. A Machine Oriented Logic Based on The revolution

Principle. Journal of the ACM, 1965, 12, 23-41.

Suppes, P. Computer-Assisted Instruction at Stanford. Technical Report

No. 174, Institute for Mathematical Studies in the Social Sciences,

May 19, 1971.

Suppes, P., & Binford, F. Experimental Teaching of Mathematical Logic

in the Elementary School. The Arithmetic Teacher, March, 1965,

187-195.

Suppes, P., Jerman, M., & Brian, D. Computer-Assisted Instruction:

Stanford's 1965-66 Arithmetic Program. New York: Academic Press,

1968.

Suppes, P., & Ihrke, C. Accelerated Program in Elementary-School

Mathematics-=The Fourth Year. psychology in the Schools 1970, 7,

111-126.

76

Appendix I

Forming Clauses for the Formal Theorem-Prover

1. SKOLEM TRANSFORMATION routine

Below is a sketch of the seven functions used to form the Skolem

transformation of a formula T.

input string n

CLOSURE n ,n

EL1MARROW n 1

NEGSCOPE -)

DISTR

Ensure that the formula n is a cloted formula.

Eliminate the implications signs.

So all occurrences of the pattern

(H) A B) become (OR(-1A)B). Any more

occurrences of (-) A B)?

NO YES

/Reduce the scope of the negations signs.

Each negation sign (n) should apply to at

most One predicate letter. So all the

occurrences of: become:

(-,(&AB)) (OR(nA) ()

("(ORAR)) (8,(A)(,E))

(-1(-1A)) A

(43 x A)) (/ x(nA))

x(1A))

NO YES

/
Distribution laws for the quantifiers 3 and V

are applied. All the occurrences

of: become:

(CEP x Aga x B)) (E3 x(OR A B))

(OV x A)(y x B)) (V x(& A B))

84

NO I

a

1

PRENEK

n is now in the

form bp where

is a string of

quantifiers and

cp is the matrix.

CNF

n is now in the

form bcO, where

T1 is T in

conjunctive normal

form.

SKOLM

Standardize the variables--rename variables

to ensure that each quantifier has a unique

dummy variable. This is done while moving all

the quantifiers to the front of n, preserving

order. If a is a variable of generalization,

renamed as CV, the T is within the scope of

the quantifier, then any a contained in IT is

renamed as W. In order to ensure that the

actual binding operator still binds the

original variables within its scope,

variables of generalization which occur in

a T are also renamed as above. When a

variable of generalization is found which has

already been renamed, it is renamed again.

Thus, order and the scope of binding

operators are preserved.

Conjunctive Normal form:

The matrix T resulting from PRENEK n is put

into an equivalent form which is the

conjunction of a finite set of disjunctions.

(OR A (&B C)) becomes (&(OR A B)(OR A C))

Eliminate the existential quantifiers.

The usual skolemization is carried out

with the skolem functions represented

as f<l>, i=1,2,. .. The universal

quantifiers are dropped.

)//

2. Is a formula * CLOSED?

-) ELIMARROW -) -->- NEGSCOPE DISTR - PRENEX
11 -4 11

of f orm
5 cp

* CLOSED

Variables in 9 have been V

standardized with numeric matrix e-

terms. VARS 4-- list of QVAR 4- variables

nonnumeric variables still of generalization

yes in 9 in n

* NOT
CLOSED

3. FORM a CLAUSE from 9

A clause for the theorem-prover is a disjunction of literals where a

literal is either an atomic formula or its negation.

CONJLIST

11

SKOLEM TRANSFORMATION 9 -)ri

L eliminate he conjunction sign.

L is a list of all the conjuncts; essentially

all occurrences of (& A B) becomes the list (A B).

All terms which are constants must be nested, in

DISTLIST list form, one list deeper. All disjunctions are

11 -411
eliminated so that a clause becomes a list of the

conjuncts which in turn are a list of the disjuncts.

Appendix II

The Rules of Logic

AA *AFFIRM THE ANTECEDENT

PhE11S2 ((AR,10.0 7.PZ 26/ D. 2P 2)
C011CL 2Q
NOP

X *COMMUTE CONJUNCTION

PREHISE ((ARDSON 2S1 21. 2))
CONCL (ANDSGN ZPZ ZS 2)
NOP
OCCuR I

CD *COMmuTF. DISJUNCTION

PREMISE ((ORs3R Zs Z ZP)
CONCL (ORSGN ZPZ Zs Z)
NOP
OCCUR I

CE *COMMUTE EQUALS

PREMISE ((.EGSIGN ZAZ ZE32))
CONCL (ELISION ZtZ %A 2)
NOP
OCC uk I.

LC *DENY THE CONSEQUENT

PREMISE ((ARROW ZQZ ZR CREGSGN Sk Z))
XICL (NEGSGN ZQ Z)

NOP 2

M *DENY THE DISJUNCT

PREMISE ((ORSUN ZS% 21' 2) ZR Z)
(DIX!. .2612
?MP 2
(DEFPROP RESTRICT
WOAD
((DENIAL (CAM (ASSOC (QUOTE ZS

(CADR (ASSOC (QUOTE IR
(SETO PIAINSUB (SuBST (QUOTE ZQ

((DENIAL CCADR (ASSOC (QUOTE ZP
(CADR (ASSOC (QUOTE ZR

(SETQ IAINSUB (SuBST cQuOTE
(T (EBIINSG 56)))
EVA)

*DEMORGAN'S LAWS

PREMISE (OR

coNCL (Ok

RI' MAI USW))
1) MAI NS uB)))
1) (QUOTE ZS2Z) NSuB)))-
1) MAI NSuB))
Z) MAINSub)))
2) (QUOTE ZS Z) MAINS 01))

((ANDSGH ZQ Z ZR Z))
((ORSGN ZQ Z Z))

(NEGsGN (ANDSON ZO Z ZS Z)))
((NEGSZA (ORSON ZQZ ZR X))))

(NEGsON CORS3N ZPZ %Sp)
CNEGSGN (ANDSGN ZP Z ZS
(ORM ZP.Z ZS%)
(ANDSON ZP Z ZS Z))

NOP
(OEFPHOP RESTRICT
(AND (SETQ MAINS in:,

(APPEND (LIST
(LIST (QUOTE ZPZ)

(CORD
C (AND

(NOT
CATON

(CAM (ASSOC (OUOTI.: xo.2) mAnisuu))»
(EQ

(CAADN (ASSOC (QUOTE 7.0 Z) MAINSuH))
NEGSGN))

(CADADR (ASSOC (QUOTE ZG Z) MAINSW)))
CT -

(LIST NEGSOR
(CAM

(ASSOC (QUOTE 7(2). MA INS U0))10)
MAI NSub))

1
87

(SLTC. NSW:.
(ArYi.r..7 (LIST

(LIfiT (4uOTT.
(CONL

t (AND
tvC; r
c Aro,

r:uoT -o)))

c

A Ain% (Ai,S)C (TuOT... 7711) "Al 1...0.1.3)

NEGS.P.,))
(CADADh (ASIAC (Ot,OTE 7.71 1)

T

({IdOlt, Zit 7.) MAI 7q7".))))))

..A1NSU:.)))
zs(Pri)

N j.ATION

?(. (CP
(NEGSciN (NE3SON ZS 77)))

((Z..7Z*)))
tlNCL (OU

ZS!:
(NEISGN (NEGSGN 7.S Z)))

Net'

*IJISJUNCTIVE SYLLOGIST.,

PfanISE. ((OJSG 7.? Z Z; 2) (AitkOhi -t? 7..SZ) (AF0(04 7-0 nt 7.))

03NCL (ORS(IN 77S ZIC7).
3

Ft *FORM A COI,JuNCTI 31,

Pi..E.M E (7.. Z.1 7.)
WAG L (AND6SN ZS I 7.g ()
N7JP 2

it; *FOICN A)ISJUhCI I ON

Itr.i.! ()
LcL (ORS..Jit, Z57. ItLG)

*71VOTHETICAL.

P7a.M15 E ((ARROW ZP V:1) (A7iF<OW 7.G Z:n 2))

CONCL (AR((04 ZR ZlZi
NOP

La *LAW OF THE bICONDI TIO41.4.7L

PRE1716E
(thIL7014:1 2P'e: V:7 X))
ANUSON (ARROW ZP Z 2) (ARROW .7.0 Z ZPZ))))

(ANUSGN (eatItOti VT. 7.<2 Z) (A7.11:0t/ 7 -1

(r.ICOVU. %), 7<c.. 17))

tili.CL (OF

NOP

LC *Li.FT CONJUNCT

?liZMISE ((At Zs '41 ":))
COMA Z;;
141P

LI *LOGICAL TkuTH

WCL (t REO
NOP 0u. T
I(PE. T

AC -*FiI..;AT C0JuCT

((AltiiStIN Z6 X 7.1174))
.t13N.CL IR
6CP

s 8

Appendix III

Sample Curriculum File

(1 (QUESTION
COMMENT "CA MARE 'COMTE ADDITION.. CA ALLOWS

You TO SWITCH THE TERMS AROUND THE...

'.' SIGN
B SIGL
C '<' NICE. "
AIIST (B /+]

[2 (Al
CCM "COMELTE ADDTION 15 Ah AXICM WHEREAS

COMMUTE EQUALS IS A...

IREMISE
B DEFINITION
C RULE OF INFERENCE."
ANENER (C]

13 (Q
COM "HERE IS THE CA AXIOM: t A.

THE CA AXIOM IS A TEUE.EQUATICL jG
HAMER WHAT NUMBERS 'A AND 'B' ARE.
WHICH 01 THESE IS AL EWIFIL OF CA...

C

I5+4=5+4
B 5+4=4+5

4+5=9. "
ANS (13.1

[4 (DERIVE (5 /+ 4 = 4 /+_5)
COM "HERE IS AN EXAMMUE OF HCW TO USE TEE

CA AXIOM:

DERIVE: 5+4=4+5

CAS A+B=B+A
Az:5$
B1:4$ (1) 5 + 4 = 4 + 5

TRY TEE PROOF. "
RESTRICT ((ADD CA))
PROOF J

(1451IVE (13./+ 2 = 2 /+ 13)

(6041% MIA fa 2HalfiRE CF Thl CA AXIOM."
ICEMISE (A 1+ H. 6 /+ 3)
RESTRICT ((NO RE))

I7 (Q
COK "WHAT NUMIER CAN 'A' BE II 'A < 6''TS

A ThUE STATEMENT?"
RANGE OIL 5J

[8 (DERIVE (A < 6)
. /-+ 3 = 5) THEN (A < 6))
P B=3)
P A /+ B = 5)
EROOF)

19 (DERIVE (A=B)
COM ""Z' STANDS FOR THE ZERO AXIOM: A+0=A"
P 5 + 0= A /+ 0)

CI ((NO SE)(ADD Z))
IROOF

WIROVE (L. l+ A = A)

COM Nia NOW KNOW FIVE AXIOM TO USE IN nous."
Dor (WC.OK)(YES cA 2))

[11 (Q
CCM "WE WILL CALL EQUATION C+A=A, TIODREM 1"
COM "SINCE YOU hAVE }COVED IllisortM 1, YOU CAN
USE IT IN OTHER PROCFC. STUDY alas...

DERIVE 0+6=6
TEl 0+A=A
A::6 (1) 0+6=6

'TH1' RUNDE FCR...

1

B AXIOM 1
C RULE 1."

ET (A (IFECREM 1)

E12 (DEBI& (0 /+ 7 = 7)
OM "USE THEOREM 1 IN 7110 IhC01. "

RESTRICT ((N0 CA Z))
ERCOF]

1

89

Appendix IV

Using the Curriculum of Appendix III

a

stSTARTT HERE IS AN EXAMPLE OF HOW TO USE THE'
WHO ARE YOU (TYPE S OR T/T CA AXIOM: .

*51
PLEASE TYPE YOUR NUMBER. DERIVE: 5+4.4+5

*65
ADELE GOLDBERG CAS'
OK? As:SS .

*YS E4:45 (I) 5 4 4 4 4 b.

TRY THE PROOF.:

DERIVE (5 + 4).t4'+ S) -

f*CAS A 4.084. A
Ass.51
Els:*4S 41/ C5 + 4).C4 + 5)

'CA MEANS 'COMMUTE ADDITION' CA ALLOWS
YOU TO SWITCH THE TERMS AROUND THE...

A) SIGN
B) '+' SIGN
C) SIGN.

*BS
CORRECT.:.

2
COMMUTE ADDTION IS AN AXIOM WHEREAS'
COMMUTE EQUALS IS A...

A) PREMISE
B) DEkJNIIION
c) nuLE OF INFERENCE.

*BS
TRY AGAIN

*CS
CORRECT...,

comnEcl...

5
DERIVE (13 + 2).(2 + 13)

s*INITS

YOU CAN NOW REQUEST A DERIVE OR PROVE
PROBLEM. OR. DERIVE A NEU RULE OF INFERENCE.

1HE INTERRUPTED PROBLEM WILL BE RES1ARTE0
IF TOD TYPE FIN

TYPE A DERIVE, PROVE OR-RULE COMMANO

3 t*DERIVEI 2+3.2+3S
HERE IS THE CA AXIOMi 2+1041+A. . DERIVE t2 3)-(2 3)

THE CA AXIOM IS A TRUE EQUATION NO
MATTER WHAT NUMBERS 'A' AND 'IP ARE.
WHICH OF THESE IS AN EXAMPLE OF CA.... I*CAS A+BB+ A

AsI*21
A) 5+4.5+4 811*35 tr: + 3).(3 +. 2)

B) 5+4.4+5
C) 4+5.5. ,1*ICEIS C2) (3 +.2).:2 + 3).

*BS :*1.21(EI5 t3) (2 + 3).12 + 3)

CORRECT...
CURREC1...

TYPE A DERIVE'. PROVE OR RULE COMMAND

NOW REDO THE PROBLEM 'YOU INTERRUPTED

DERIVE

A1,1.1,1311

131142S

(13 + 2).C2 + 13)

A N.

(1)

CORRECT...

90

B + A

(13 + S).C2 13)

6
TRY'USING THE SHORTFORM OF THE CA AXIOM.

DERIVE (A + B).(3 + 6)
(I) (A + 8)..(6 + 3)

t*CAS A+B. 8+ A
Acc*61.
Bti*32. (2) (6 + 3).4(3 + 6)

c*1.214E1S (3) (A + B)*(3 + 6)

10
YOU NOW KNOW .FIVE AXIOMS TO USE IN PROOFS.

PROVE (0 + A). A

c*INITS
YOU MAY NOT 8EEUEST YOOR OWN PROBLEMS NOW!

s*ZS A + 0 A
Ati*AS (I) (A + 0). A

c*ICAACA.IS (2) (O + A). A
CORRECT...

YOU MAY NOT USE RULE.RE IN TH/S PROBLEM CORRECT...
TRY AGAIN

DERIVE (A + 8).(3 + 6) II

(I) (A + 8).(6 + 3) WE WILL CALL EQUATION 04.A-Ap THEOREM I

t*ICARS (2) CA + 110*(3 + 6) ' SINCE YOU HAVE PROVED THEOREM I. you CAN
USE IT IN OTHER PROOFS. STUDY THIS...

DERIVE 0+6-6
7 THI 0+A*A
WHAT NUMBER CAN 'A. BE IF .14 4 6. /s At'16 (I) .0+6.6
A TRUE STATEMENT?

CORRECT...

.THI. STANDS FOR....
*4S
CORRECT... A) THEOREM /

B) AXIOM 1
8 C) RULE I.
DERIVE A 4 6

(I) (CA + 3) S)-*(A c 6) THEOREM is
(2) B 3 CORRECT...
C3) (A + 13).

12
c4.3.2REIS (4) (A +. 3). s. USE THEOREM I IN THIS PROOF.

c*I.4AASS (5) A c 6 DERIVE CO + 7)... 7

CORRECT... 1*TH1S 0 + A . A
Acc*7 S CI) (O + 7)* 7

9
'Z' STANDS FOR THE ZERO AXIOM: 144.0-A CORRECT...

LESSON OVER...
DERIVE A B GOODBYE...ADELE

(I). (B + 0).(A + 0)

*
NO COMMAND REQUESTED?

t*ZS A + 0
Ati*BS (2) (B + 0).

i*ZS A + 0 A
Att*AS. (3) AA + 0). A

c4.1.2REIS (4) 8 (A +.0)

14.4.3REIS (5) A

A*CEIS (6) A B

CORRECT...

2

Appendix V

Some Sample Proofs

The first proof given is of a theorem of logic which is motivated by

Russells' paradox. Simply let 'F1 be interpreted as the membership relation

of set theory; then, the sentence to be proved asserts that there is no set

which consists of exactly those sets which are not members of themselves.

Special attention should be paid to the fact that some of the lines of the proof

are justified on the basis of either universal specification or existential

specification. Both of these rules involve proper substitution of a term A for

a variable X.

The second theorem of first-order logic for which a proof is provided is a

variant of Russell's paradox (again, for 'F' read 'e'). The antecedent of the

theorem is an instance of the well-known Aussonderung: axiom due to Zermelo

(thus, sometimes referred to as 'Zermelo's Axiom'); it asserts the existence

of those sets which are a subset of some given set as defined by some well-formed

formula of the language. It is expected that from this axiom one can prove

the non-existonce of the troublesome universal class and this is what the

consequent of the theorem asserts. Note that instances of previously proved

theorems are needed for the proof. Of special significance is the fact that in

obtaining these instances substitution for predicates is needed; for example,

the formula 'F(v,v)1 is substituted for the 0-place predicate

The third example is an alternative derivation of the fact that the universal

class is not a set. Premise (1)' asserts that every set is such that the cardinal

number of the class of all subsets of it is greater than the cardinal number of

the set itself; this is, of course, Cantor's theorem. Premise (2). asserts that

the class of all subsets of a given set is itself a set; this is the Power Set

axiom of axiomatic set theory. Premise (3)' asserts that for sets x,y such that

y contains x, it is not the case that the cardinal number of x is greater than

the cardinal number of y. The final premise asserts that the universal Class

contains every set.

92
1

DEH114.

140.1PE

14,11cIP,E5S

NO1 CF. YCA

(I)

XCF(X,Y) I/4 (NO1 F(X.X))!))

rE yce, XCI.(X.Y) IFT CNOT(P(X.V)))))$

YturZt. (2) A XCF(X,Z) I}FCNOT F(X.X)i)

tOUSE
Xts*ZE (3) FCZ,7.)IFFCNO1 F(Z.Z))

:*31..ES (A) CF(ZZ) I(Z,Z)))&CCNOT (*.X) (7. 7))

:*4LCS (5) F(Z.Z).(NO7 F(Z.Z))

st4RCS (6) CNO7 FCZ.Z)

:Sian (7) .*N01 P(Z.Z)T

156.76A5 (S) }(Z.Z)

147.7.81PS (9)

so.WPS (IO) tFCZ.Z)5

(1.5.10AAS C115 NO) F(Z.Z)

1.1.10010.11/FS
(12) NOT F(Z.Z)

stI.9.121P7(13) NOICE YCA YCF(X,Y) IFF(NO7 F(X.X))))).

COEREOT...

DERIVE CA ZCE YCA X(F(26Y) IFFIF(X.Z) S(NO/ i'CX,X3)))))).CNO7CE
Z(A X F(X,Z))))

SCOPS
S

(I) SA ZCE Y CA XCF(X,Y) CF(X,Z)8.(NOT F(V,Y)))))

2*WPS (2) SE Z(A X P(X,Z))S

152E56
ZS tritS (3) A X FCX,Irf

21055
(4) F. YcA XCI.(X.Y) iFFCF(X,W) &MOT F(X.Y))).))

I.1.4ESS
YsIUS CE) A X(F(Y.lt) SONICIT F(XsX)) /

Is5USS
XItrV$ (6) }CU,VIIFFCFCV.110 &(NC)) FCVA.6))

srPSONAS CO 1FF(H SCNOT 6))->'1 IFF(O &(NO1 C))).

istOtFCV.i.0)5
stOtaCX.W)S
st*XsUS

(7) CECO,6 liFCV(U.W) £(N()) koh,0»).)>(Fcv.w)
II.FCY(V,V) S(NOT F(V,V))))

1,07.6665 (R) 1.(1.6)1FM(VAU) ((1U1 5C0.6))

l*PSINOS NO1CO &Mil 6)
sc*OsF(V.V)$
111.1.

93

(9) N01C2(VIV) A(NOT F1*.V)))

1rALB$ (10) CF(V16) -.CF(V.1d) S(NO1 F(100)))))11CCF(VPV)
.4(001 F(V.V))) .> F(V.W))

1.1,101_CS (11) .FCV.W).>(FCV.V) g(NOT F(1.11)))

(*II..90CS (12) NOT F(1).14)

1A3U5S
XrCA,V$ (13)

1,02.12.13[PS
(14) &010E 21(A X F(X.4)))

1*1.14CP5 (15) CA ./...CE YCA XCP(X),Y) IFF(FCX.Z) &(NOT F(X.X)))))))..>C

NOTCF X(A X F(X,X))))

CORRECT...

BERM NOT 5 U

tOPS (1) *A X(S(X)-* G(A(B(X)).A(X))/S

soPS (0) *A X(5(X)-).5(111(X)))5

toPS (3) *A)(CA y«s(x) B
(NOW 9(A(X).a1(7)11)))S

t*PS (4) *A

tOWPS (5) *S(U)S

t*euss
xlvws (6) 5 U..> 5 N U

s*S.SAAS (Y) 5 B U

1*3USS
Xts*B(U)S (B) A YC (SBUS SY) .>CC(YPB U) ->CNOT CSCABOsA Y

)))

(*BUSS
Yst*US (9) (5 B U S. 5 u)->cp(u,13 U) -.(ROT G(A B U.A U)))

1*7.5,CS (IO) 5 5 Ut 5 U

09.10AAS (11) C(U,B U)-,(NOT GCA 9 U,4 U))

st4uss
xrfaB(U)S (12) 5 B U.> c(U,la U)

2*12.7445 (1.1 C(U.B U)

s*II.13AAS (14) NOT GCA B 0.4 CP

s*IUSS
Xstous CIS/ 5 4... 0(1 B 0.4 U)

V615.5AAS (16) 0(4 B UNA U)

246.14.161PS
(17) NOT S U

CORRECT...

94

.44

.71);A
kit.V

fP,
1

1111,1,,

116,11,p,41P,111!?1,Jitiflalli!v111,1pli,
'

1',
'H

I
viliJ111,'1,, ;!J.,,'

11,1,

0V
011111

1.1'.'
iiliv

ii

,1P,),,.11C
.

vil'Ilir
1

iv1.1111V
i:r,

1,11,11

r

I
li

'V
'li,l'Ir

!
,

,1,,,
!,,',

1,1'41111,,.

(I,11,YI,'il
,''

,1,,,1',:l
11;41,1,!'ill'''vhli'''J11,1.

':1,1"11
IV

'eldG
'11

,

1,i

4,111.1,,
k

',,,',ItitC
11

11
1,1

r 0I

4
1111.eill: i

I

'

I'l,'1,,.112,1g.11.1:1:pil';14111:,
,11,1,'.i1,0,

,
H

I
iii

11A
,1111'11!;,41111,3rf: (114

i,i4
IlL

,I,':1!
II;

l'.1

,
ill

1r,Ii

Pilv ,.11i

4

'

11111

II

'

,

'
'

,., ./.;
,

